

Crop Suitability Maps for Potential Cash Crops: Middle and South Jordan Valley

> Report submitted to: Academy for Educational Development By: Noemi Sabillon, PhD. October 2004.

EXECUTIVE SUMMARY

Crop Selection

This report focuses on eight fruit crops (apricot, avocado, mango, fig, litchi, peach, nectarine, and pistachio) and two vegetable crops (artichoke and sweet potato). The requirements for each crop including climate, soil and water are listed in Appendix I. Some of these crops (i.e. apricot, peach, nectarine, and pistachio) require a specific chilling period to stimulate fruiting. Since different varieties have different chilling requirements, care must be taken to select the right variety for each area according to their chill hours. According to the Meteorological Department, Agro meteorological Directorate (2003) and information from weather stations in Deir Alla and Baqura, the period with temperature of $0.1 - 7.0^{\circ}$ C during November to March, in the Jordan Valley is insufficient for deciduous fruit trees. While other crops, such as avocado and mango are more suited, attention must be given to the selection of the appropriate rootstock, which will determine their ultimate adaptability to different soil and water conditions.

Methodology

The methodology used in this study is the same used in preparing the Crop Suitability Map. However, more detail is provided on special crop characteristics, climatic requirement, water quality, and varieties.

Separated maps are provided for each crop according to yield potential (100%, 90%, and 75%) based on salt tolerance, and general maps for each crop regarding soil texture, pH, and ECe (Appendix II). A list of tables on water quality consideration is included in Appendix III.

Special considerations

Apricot:

- Fruits will crack in humid climate
- Cross-pollination maximizes yield
- Common varieties are: Goldkist, and Royal (AKA Blenheim)

Artichoke

- Hot, dry, windy conditions create woody, bitter, less compact buds with bracts that curve outward
- Freezing damages bud bracts, causing blistering of the outer bud tissue and a whitish appearance
- Yield is a function of population density
- Excessive irrigation encourages root rot

- Excessive fertilizer reduces both yield and quality
- Common varieties are: Green Globe, Imperial star, Emerald, and Green Globe Improved

Mango

- Applications of copper, zinc, manganese, iron, and boron are necessary on calcareous soils
- Rootstocks tolerant of high pH soils should be selected specially rootstocks that have dwarfing effects
- Over irrigation and over fertilization stimulate vegetative growth but flowering and fruiting are suppressed
- Common cultivars are Keith, Maya, and Shelly

Avocado

- Rootstocks differ in their ability to reduce the chloride uptake and translocation to the tops.
- Mexican varieties are less salt than Guatemalan and West Indians races
- Common cultivars are Hass, Ettinger, and Fuerte

Figs

- Figs required plenty of sunshine and heat to ripen
- The most common method of propagation is to root leafless cuttings. *In Vitro* propagation is another alternative.
- Common cultivars are Sultani, White Adriatic

Litchi

- The best method for propagation is air-layering
- Auxins sprays and autumnal water stress are recommended to increase yields
- Mycorrhizae on the roots are essential for the development of the crop in calcareous soils
- Water table should be kept at least 1.2 m below soil surface
- Common cultivars are Mauritius (Da Zao), Nuo Mi Ci, Huai Zhi, BD 5-27, BD 17-70, Fei Zi Xiao, Kaimana, Sah Keng, Amboina, Bengal, Brewster, Groff, Hak ip, and Kwa luk

Peaches and Nectarines

- They require plenty of sunlight during growth and a specific number of chill hours, depending on variety, during dormancy
- Peach X almond crosses tolerate high pH and calcareous soils
- Needs severe pruning after planting and annually (open vase system).
- Fruits must be thinned to increase fruit quality. Rule of thumb: the distance between fruits along the shoot should be at least 15 cm and two fruits should not be closer than 10 cm from each other
- Shallow soils restricted by hardpans should be avoided
- Rootstocks should be resistant to root-knot nematode
- Common peach varieties are Red Ceylon, August Pride, Bonita, Desert Gold, Earligrande, Eva's Pride, May Pride, Mid Pride, and Ventura.
- Common nectarines varieties are Flamekist and Fairlane

Pistachio

- Nut production is influenced by drought, rain, temperature, and wind
- Rootstocks used for propagation should be resistant to nematodes and fungal diseases
- For the production of fruits, male and female trees are needed or male branches should be grafted onto female trees
- Kerman and Peters are the common cultivars

Sweet Potato

- Excessive irrigation should be avoided in early and late growth stages
- Most common cultivars are Jewel, Beauregard, White Delight, and Sumor

Quality of irrigation water to be used for each crop.

Table 1. Shows the quality of the water used for irrigation in the MJV and SJV.

According to this data, and the requirements of the crops included in this report:

- Only the water from the Kufranja dam would be suitable for irrigating crops which are sensitive to boron such as apricot, avocado, figs nectarine, and peach
- Artichoke, a tolerant crop to boron, can be irrigated with water from all the sources available, except the Karama dam
- Avocado, depending on the variety, could be irrigated with water that has less than 4.0 meq/l of Cl for Mexican race up to 15 meq/l of Cl for West Indian avocados. The SAR should be less than 4
- Overall, the water from the Karama dam is not suitable for irrigation

2003).						
	FAO 29 ¹	KTD	Kufranja	Shueib	Kafrein	Karama
$EC_{iw}(dS/m)$	<0.7 None	1.5-2.9	0.70-1.5	0.6-1.3	0.6-1.3	5.0-40.0
	0.7-3.0 Slight to moderate	Slight to	Slight to	Slight to	Slight to	Severe
	>3.0 Severe	moderate	moderate	moderate	moderate	
Na (meq/l)	<3.0 None	0-15.0	1.0-2.5	0.6-4.6	0-5.0	30-
	3.0-9.0 Slight to moderate	Severe	None	Slight to	Slight to	220.0
	>9.0 Severe			moderate	moderate	Severe
SAR	0-6 and $EC_{iw} > 1.2$ none	2.0-6.5	0.6-1.3	0.5-2.6	0.0-2.6	7.0-28.0
		None	None	None	None	None
N-NO ₃ (ppm)	<5.0 None	0-30.0	7.0-12.0	0-11.0	0-11.0	5.0-20
- 11 /	5.0-30.0 Slight to moderate	Slight to				
	>30.0 Severe	moderate	moderate	moderate	moderate	moderate
HCO ₃	<1.5 None	4.0-12.5	3.5-6.0	1.6-5.5	2.0-11.0	
-	1.5-8.5 Slight to moderate	Severe	Slight to	Slight to	Severe	
(meq/l)	>8.5 Severe		moderate	moderate		
B (ppm)	<0.7 None	0.2-1.1	0.14-0.34	0.2-1.0	0.1-1.7	0-12.0
	0.7-3.0 Slight to moderate	Slight to	None	Slight to	Slight to	Severe
	>3.0 Severe	moderate		moderate	moderate	
Cl (meq/l)	<4.0 None	5.0-15.0	1.4-3.5	1.0-6.0	1.5-5.5	0-300.0
	4.0-10.0 Slight to moderate	Moderate/	None	Slight to	Slight to	Severe
	>10.0 Severe	Severe		moderate	moderate	
PH	6.5-8.4 Normal	7.5-8.0	8.3-8.6	7.5-9.0	7.5-10.0	7.0-9.0

Table 1.	Quality for different water sources in the MJV and SJV (Source: PA-ECO	Consult,
2003).		

Appendix I Crop requirements¹

	Crop							
Common name	Botanical name	Local name	Family	Life form	Habit	Life span	Physiology	Category
Apricot	Prunus armeniaca	mish mish	Rosaceae	tree	erect	perennial	deciduous, single stem	forage/pasture, fruits & nuts, materials
Artichoke	Cynara scolymus	ardishok	Compositae	herb	erect	perennial		vegetables, materials, medicinals & aromatic
Avocado	Persea americana	avucado	Lauraceae	tree	erect	perennial	evergreen, deciduous, single stem, C3 photosynthesis	fruits & nuts, forest/wood
Figs	Ficus carica	teen	Moraceae	shrub, tree	erect	perennial	deciduous, single stem, multi stem, C3 photosynthesis	fruits & nuts, ornamentals/turf, medicinals & aromatic
Litchi	Litchi chinensis	lishi	Sapindaceae	tree	erect	perennial	evergreen, single stem, C3 photosynthesis	fruits & nuts, materials, ornamentals/turf, medicinals & aromatic, forest/wood, environmental
Mango	Mangifera indica	manga	Anacardiaceae	tree	erect	perennial		fruits & nuts, medicinals & aromatic, forest/wood

	Crop	I						
Common name	Botanical name	Local name	Family	Life form	Habit	Life span	Physiology	Category
	Prunus persica	durraq	Rosaceae	shrub, tree	erect	perennial	deciduous, single stem, multi stem	fruits & nuts, ornamentals/turf, environmental
Peach	Prunus persica	durraq	Rosaceae	shrub, tree	erect	perennial	deciduous, single stem, multi stem	fruits & nuts, ornamentals/turf, environmental
Pistachio	Pistacia vera	fustoq halabi	Anacardiaceae	tree	erect	perennial	deciduous, single stem	fruits & nuts, materials, medicinals & aromatic
Sweet potato	Ipomoea batatas	batata helwua	Convolvulaceae	herb,	prostrate /procum bent/sem i-erect		multi stem, C3 photosynthesis	roots/tubers, forage/pasture, vegetables

		Tempe	erature		R	ainfall (annua	l)	Latitude				Altitude	
Сгор	Opt	imal	Abs	olute	Opt	imal	Abso	olute	Opt	imal	Abso	olute	Abs	olute
Common name	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Apricot	14	35	7	40	900	1300	800	1470					0	2000
Artichoke	15	25	5	30	900	1200	300	1500					0	2000
Avocado	14	40	10	45	500	2000	300	2500	0	42	0	42	0	2800
Figs	16	26	4	38	700	1500	300	2700	30	50	25	53	0	1200
Litchi	20	35	15	40	1000	1700	700	2800	13	29	9	32	0	2000
Mango	20	30	8	48	600	1500	300	2600	0	25	0	30	0	1200
Nectarine	20	33	7	35	900	1100	750	1600	30	50	30	50	0	1000
Peach	20	33	7	35	900	1100	750	1600	30	50	30	50	0	1000
Pistachio	25	35	12	40	400	700	250	1100	25	35	25	35	0	1200
Sweet potato	18	28	10	38	750	2000	350	5000	0	32	0	40	0	2800

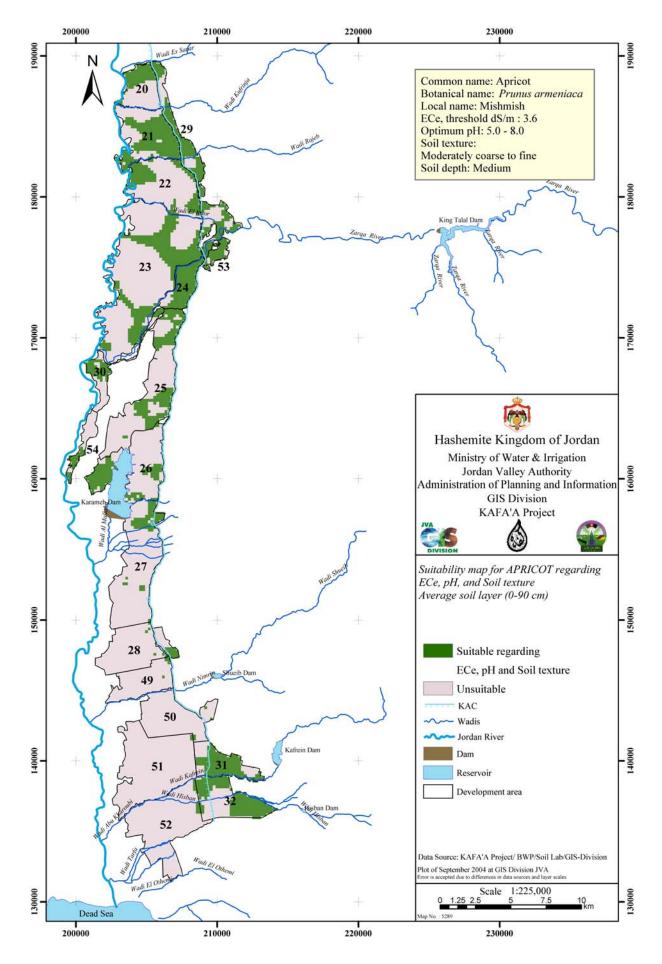
Crop		Soil	pН		Soil d	lepth	Soil te	xture	Soil fe	ertility	Soil drainage		
Common	Opt	imal	Abse	olute									
name	Min	Max	Min	Max	Optimal	Absolute	Optimal	Absolute	Optimal	Absolute	Optimal	Absolute	
								Coarse to					
Apricot	6.5	7	5	8	deep	medium	medium	fine	moderate	moderate	well	well	
							medium to						
							moderately	Coarse to					
Artichoke	6	6.5	5.5	8.3	medium	medium	coarse	fine	high	moderate	well	well	
Avocado	5	5.8	4.5	7*/8	deep	deep	medium	medium	moderate	moderate	well	well	
Avocado	5	5.0	4.5	/ /0	ucep	ucep	meanum	Coarse to	mouerate	moucraic	wen	well,	
Figs	6	7	4.3	8.6	deep	medium	medium	fine	moderate	low	well	excessive	
1 155	0	,	1.5	0.0	ueep	mearann			moderate	10 10	wen		
			_	0.7			medium,	Coarse to				Poorly, well,	
Litchi	5.5	6.5	5	8.5	deep	shallow	organic	fine	moderate	low	well	excessive	
							medium to	C				11	
Manga	5.5	7.5	4.3	8.5	deen	medium	moderately		moderate	low	well	well,	
Mango	5.5	1.5	4.5	0.3	deep	meanum	coarse medium to	fine	moderate	low	wen	excessive	
							moderately	Coarse to					
Nectarine	5.5	6.3	4.5	7.5/8	deep	medium	coarse	fine	high	moderate	well	well	
ricetarine	0.0	0.5	110	1.010	ucep	meanan	medium to	Tine	mgn	mouerute	wen	wen	
							moderately	Coarse to					
Peach	5.5	6.3	4.5	7.5/8	deep	medium	coarse	fine	high	moderate	well	well	
					Î.		medium to						
							moderately	Coarse to				well,	
Pistachio	7	8	6	8.5	medium	shallow	coarse	fine	moderate	low	well	excessive	
Sweet								Coarse to					
potato	5	7	4	8.7	medium	shallow	medium	fine	high	low	well	well	

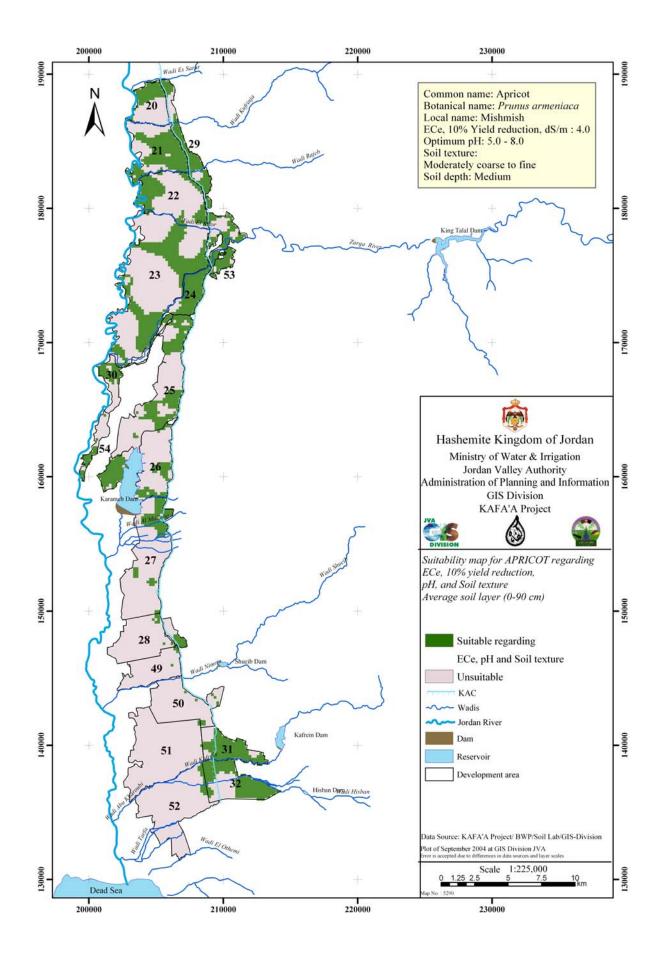
* red values according to literature review.

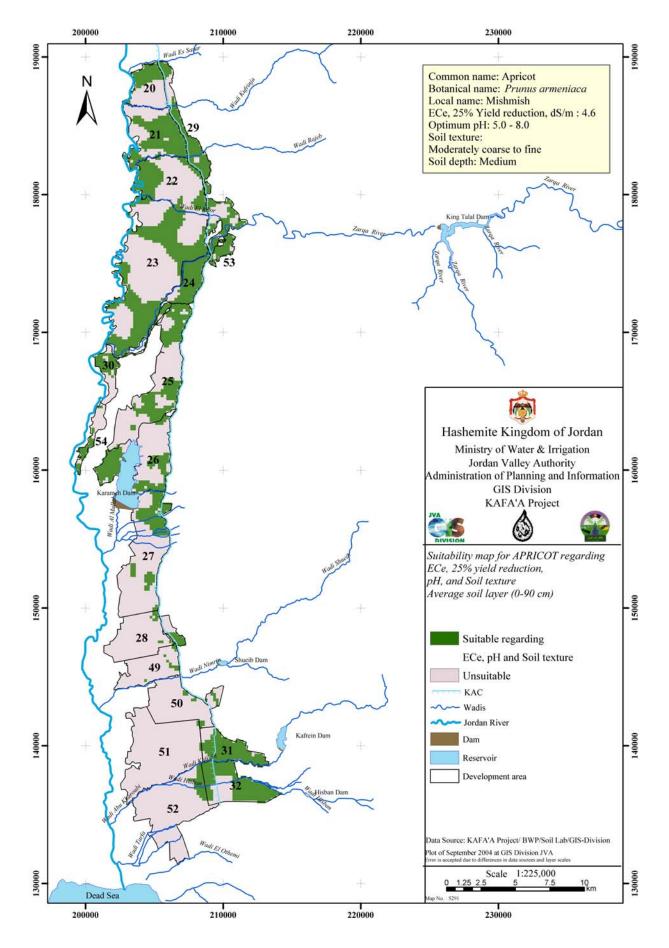
Сгор			inity, ECe yield redu		1	Tole	rance		Management
Common name	0%	10%	25%	50%	100%	Boron, mg/l	Chloride _{sw} , ppm	Average Root depth, m	Allowed Depletion, MAD
Apricot	3.6	4	4.6	5.7	7.8	0.5-0.75		1.2	0.50
Artichoke ¹	6	7.2	9	12	18	2.0-4.0		0.8	0.45
Avocado ²	3.6	4	4.6	5.7	7.8	0.5-0.75	350-525	0.8	0.70
Figs ³	4.7	5.8	7.5	10.4	16	0.5-0.75		0.9	
Litchi	3.6	4	4.6	5.7	7.8				
Mango ²	3.6	4	4.6	5.7	7.8				
Nectarine	3.7	4.2	4.9	6.1	8.5	0.5-0.75		1.2	0.50
Peach	3.7	4.2	4.9	6.1	8.5	0.5-0.75		1.2	0.50
Pistachio ³	4.7	5.8	7.5	10.4	16			1.2	0.40
Sweet potato	4.5	5.5	7	10	14.6	0.75-1.0	525	0.9	0.65

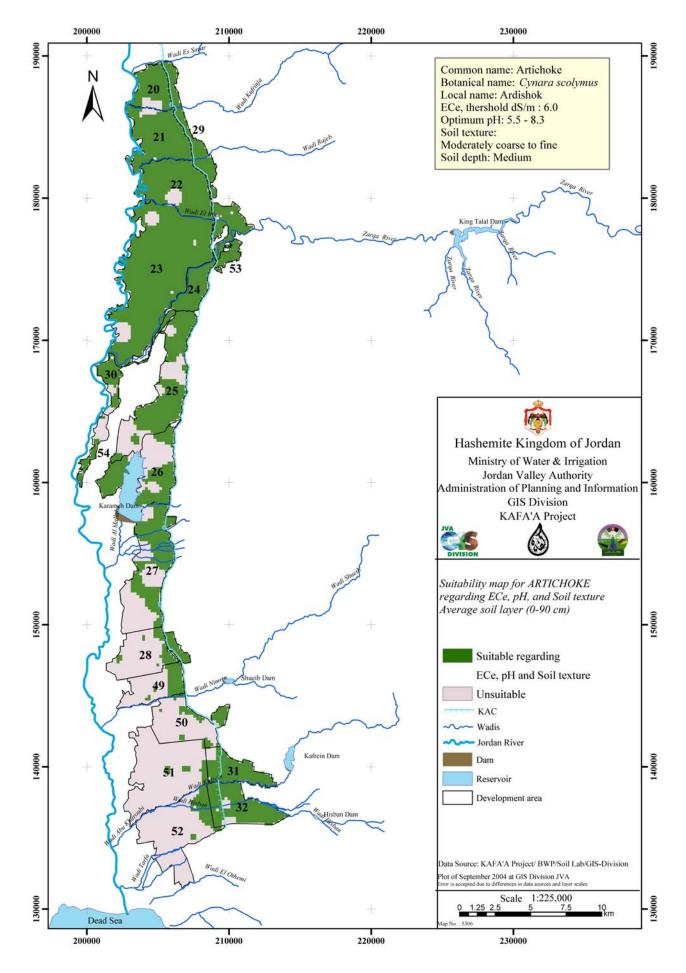
¹ Assumed to have a slope of 8.3 ² Assumed the same value as apricot ³ Assumed the same value as olive

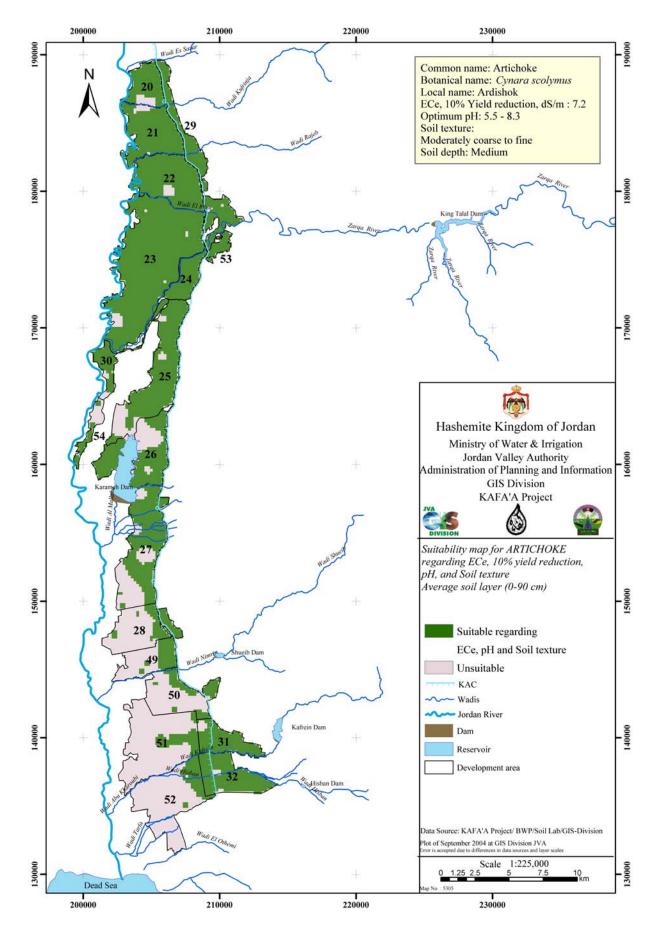
		lling erature	Abio	otic	Ont	Light ir imal	•	olute	Photoperiod	
Crop Common name	During rest	Early growth		Suscepti bility	min	max	min	max	1 notoperiou	
Apricot	-5	1		Humidity frost, wind	very bright	very bright	very bright	clear skies	short day (<12 hours), neutral day (12-14 hours), long day (>14 hours)	
Artichoke	1	0			clear skies	cloudy	very bright	cloudy	short day (<12 hours), neutral day (12-14 hours), long day (>14 hours)	
Avocado	-4	-1		Wind, Flooding	very bright	very bright	clear skies	very bright		
Figs	-12	-1	Drought		very bright	clear skies	very bright		short day (<12 hours), neutral day (12-14 hours), long day (>14 hours)	
Litchi	-5	-1		Wind, Flooding	very bright	clear skies	very bright	cloudy skies	short day (<12 hours), neutral day (12-14 hours), long day (>14 hours)	
Mango	-1	0		Frost	very bright	very bright	cloudy skies	very bright	short day (<12 hours), neutral day (12-14 hours), long day (>14 hours)	
Nectarine	-5	-5			very bright	very bright	very bright		short day (<12 hours), neutral day (12-14 hours), long day (>14 hours)	
Peach	-5	-5		Flooding	very bright	very bright	very bright	cloudy skies	short day (<12 hours), neutral day (12-14 hours), long day (>14 hours)	
Pistachio	-18	-1	Drought, high summer temp.	Flooding, high RH	very bright	very bright	very bright	very bright	short day (<12 hours)	
Sweet potato	1	5		Frost	very bright	very bright	very bright	clear skies	short day (<12 hours), neutral day (12-14 hours)	

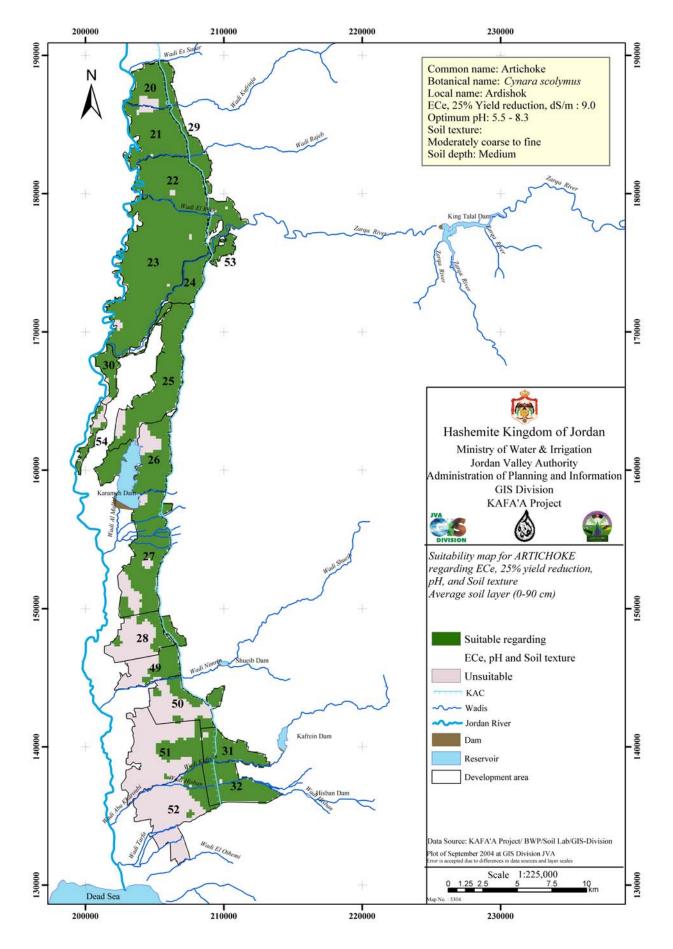

Crop Common name	climate zone	Main use	Detailed use	Used part
Apricot	subtropical humid (Cf), subtropical dry summer (Cs), subtropical dry winter (Cw), temperate oceanic (Do), temperate continental (Dc), temperate with humid winters (Df), temperate with dry winters (Dw)	food & beverage, animal food (feed), material, environmental	vitamins, minerals, lipids, lipids/oil & fats, ornamental/turf	fruits, seeds, leaves, entire plant
Artichoke	tropical wet & dry (Aw), steppe or semiarid (Bs), subtropical dry summer (Cs), temperate oceanic (Do)	food & beverage, material, medicinal	vitamins, dye/tannin/ applications	flowers, leaves
Avocado	tropical wet & dry (Aw), tropical wet (Ar)	food & beverage, animal food (feed), material, medicinal, poison, environmental	vitamins, minerals, protein, timber wood, cosmetics & perfumery, applications, agroforestry	fruits, seeds, leaves, entire plant
Figs	tropical wet & dry (Aw), tropical wet (Ar), steppe or semiarid (Bs), subtropical humid (Cf), subtropical dry summer (Cs), subtropical dry winter (Cw), temperate oceanic (Do), temperate continental (Dc), temperate with humid winters (Df), temperate with dry winters (Dw)	food & beverage, animal food (feed), material, medicinal, environmental	vitamins, minerals, dye/tannin, applications, ornamental/turf, shade & shelter	fruits, leaves, entire plant
	tropical wet & dry (Aw), subtropical humid (Cf), subtropical dry summer (Cs), subtropical dry winter (Cw)	food & beverage, environmental, medicinal, material	vitamins, minerals, shade & shelter, agroforestry, ornamental, turf, timber,	fruits, entire plant, seeds, stems, flowers

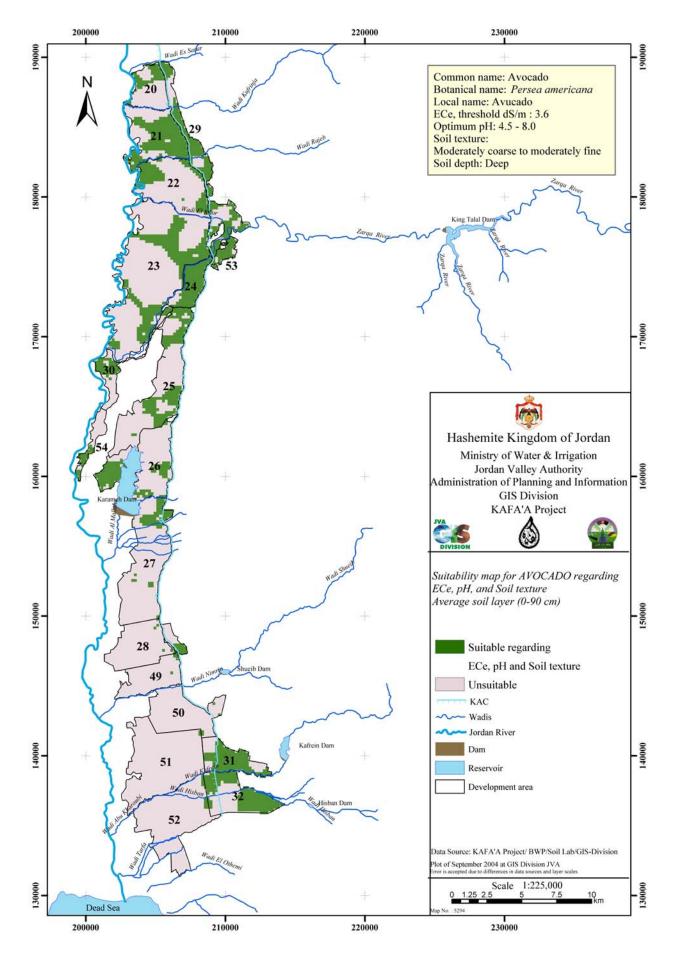

Сгор				
Common name	Climate zone	Main use	Detailed use	Used part
				fruits,
			vitamins, minerals,	seeds,
	tropical wet & dry (Aw), tropical wet (Ar), desert	food & beverage, animal	fuelwood, charcoal, timber	leaves,
	or arid (Bw), steppe or semiarid (Bs), subtropical	food (feed), fuels, material,	wood, dye/tannin,	stems,
Mango	dry summer (Cs)	medicinal	applications	bark
			vitamins, minerals,	fruits,
	subtropical humid (Cf), subtropical dry summer	food & beverage,	agroforestry,	entire
Nectarine	(Cs)	environmental	ornamental/turf	plant
			vitamins, minerals,	fruits,
	subtropical humid (Cf), subtropical dry summer	food & beverage,	agroforestry,	entire
Peach	(Cs)	environmental	ornamental/turf	plant
			vitamins, minerals, lipids,	seeds,
	steppe or semiarid (Bs), subtropical dry summer	food & beverage, material,	dye/tannin, gums?resins,	galls,
Pistachio	(Cs), temperate oceanic (Do)	medicinal	•	fruits, bark
			•	roots,
	tropical wet & dry (Aw), tropical wet (Ar), steppe	food & beverage, animal		leaves,
Sweet potato	or semiarid (Bs), subtropical humid (Cf)	food (feed)	starch, vitamins, minerals	steams

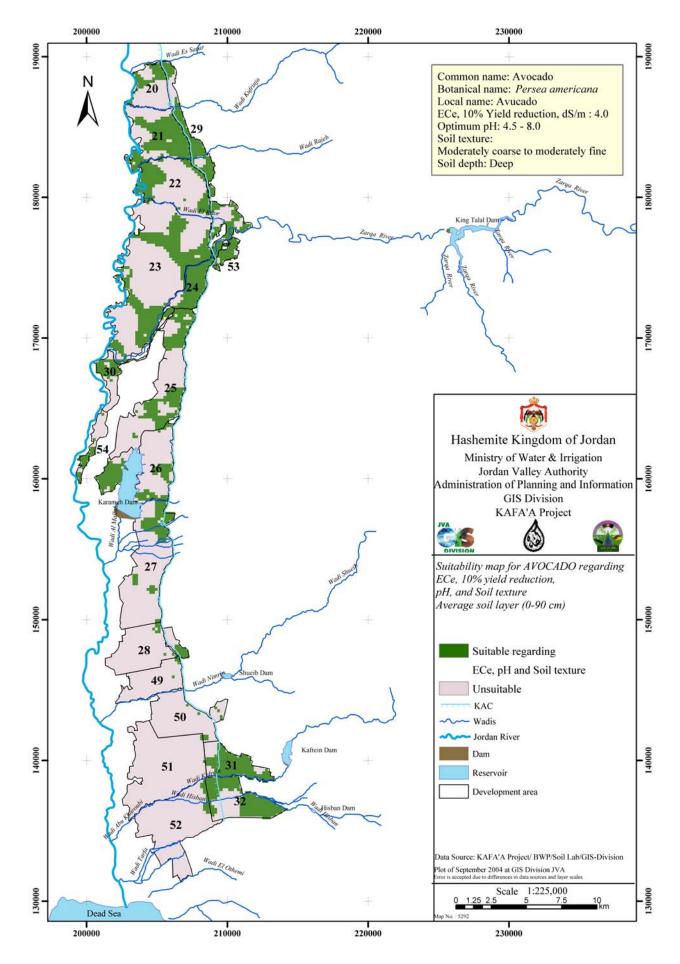

¹Main source: <u>http://ecocorp.fao.org</u>

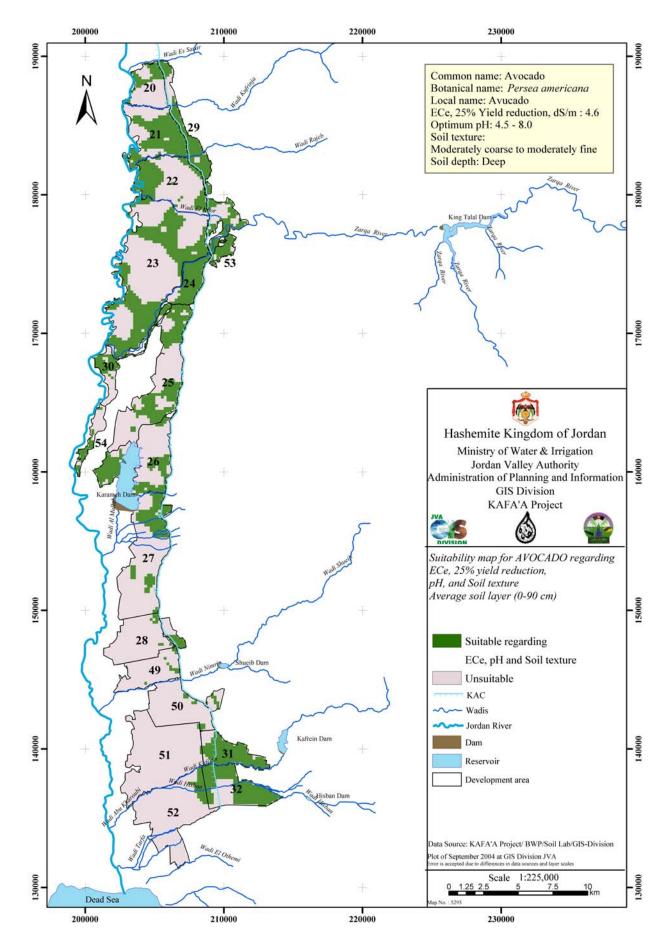

Appendix II Crop Suitability Maps

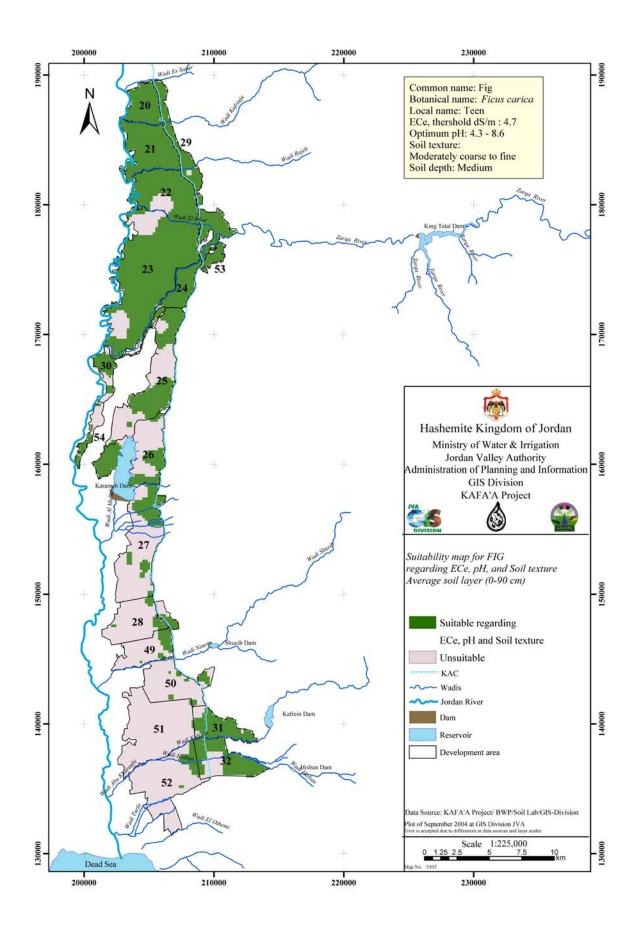

CROP SUITABILITY MAPS REGARDING ECe, pH, and SOIL TEXTURE

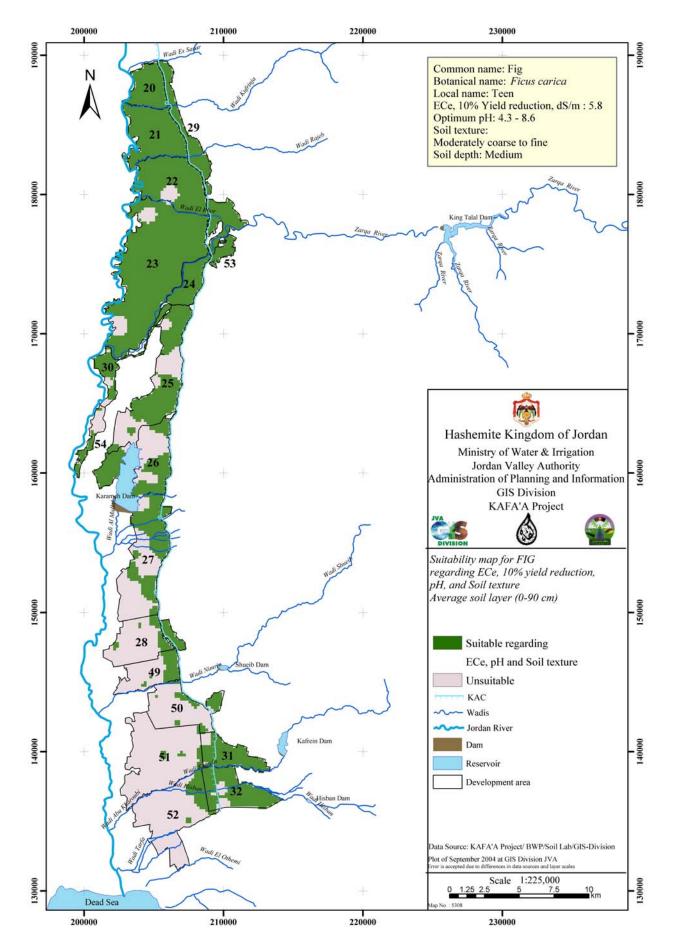


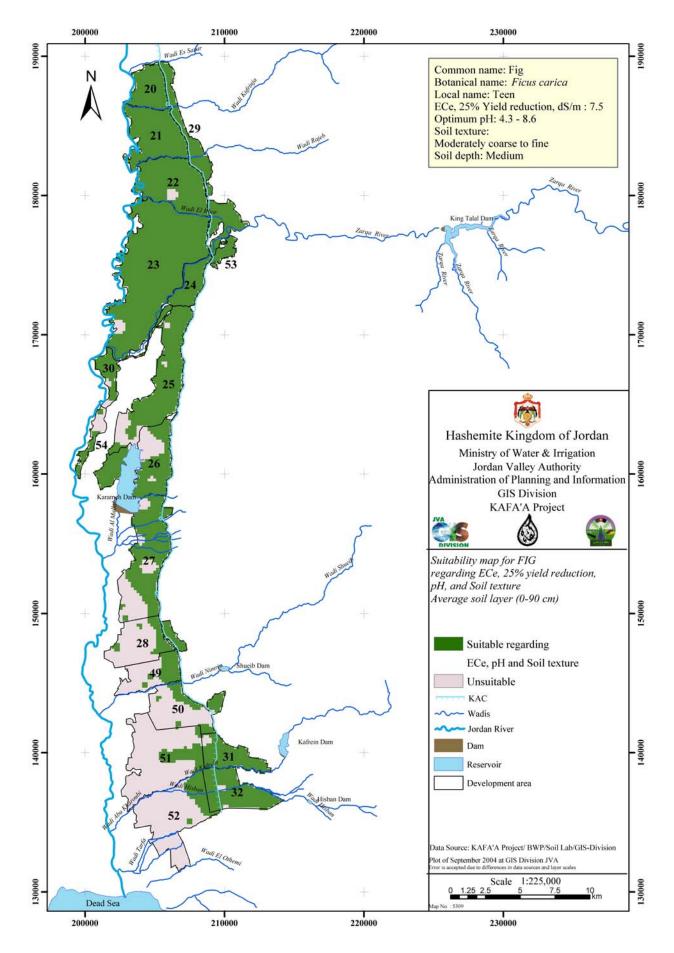


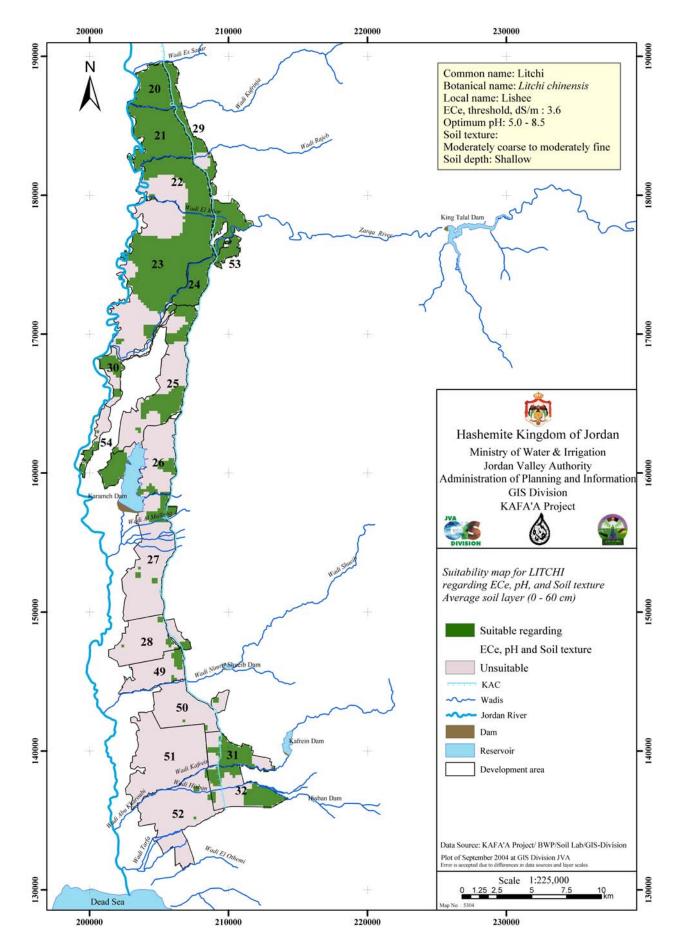


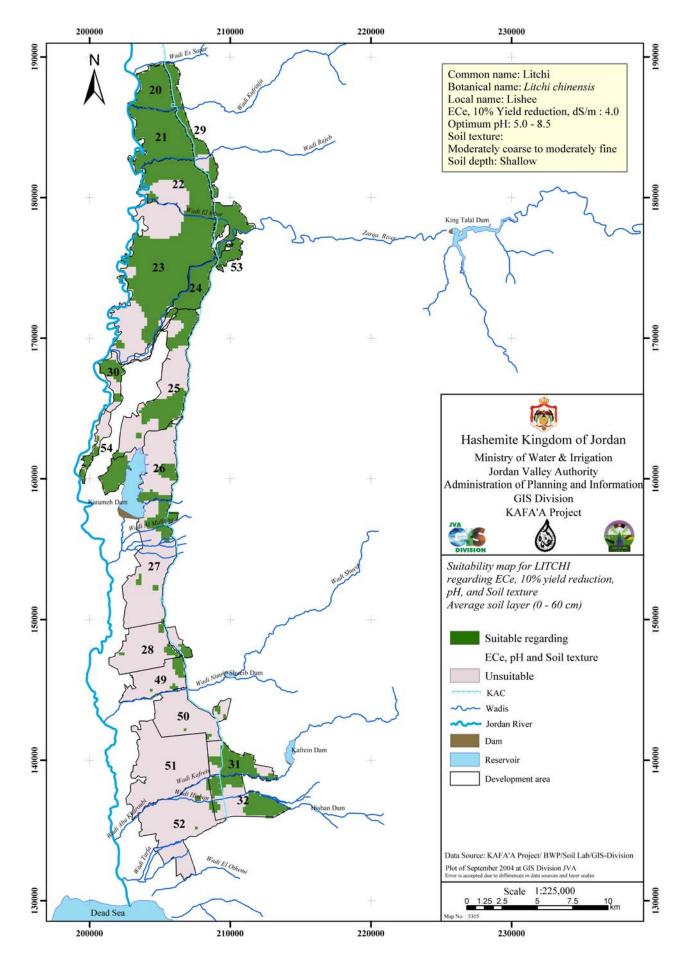


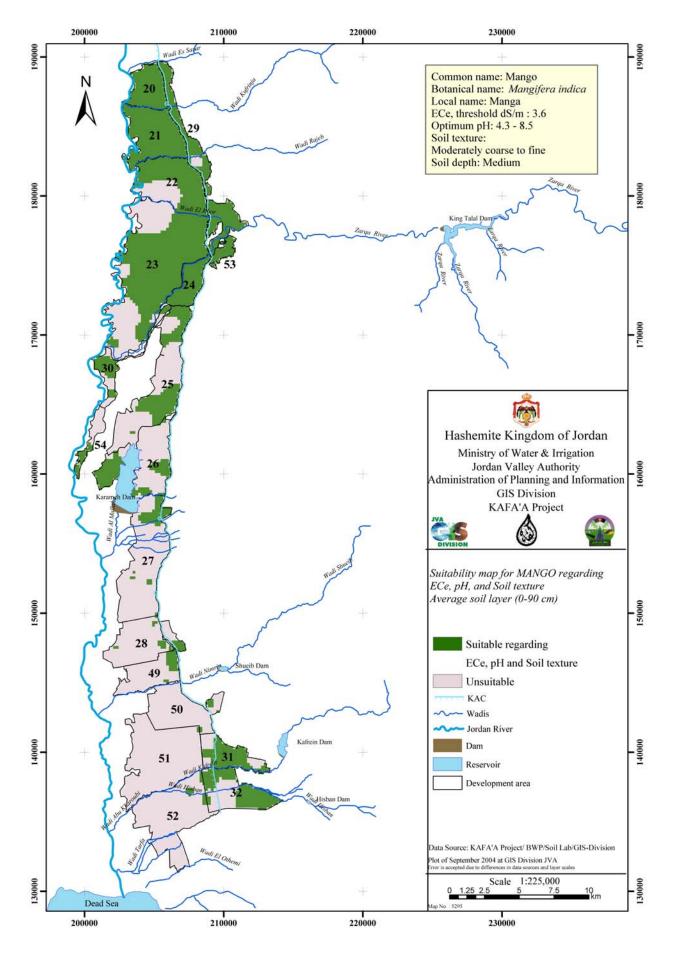


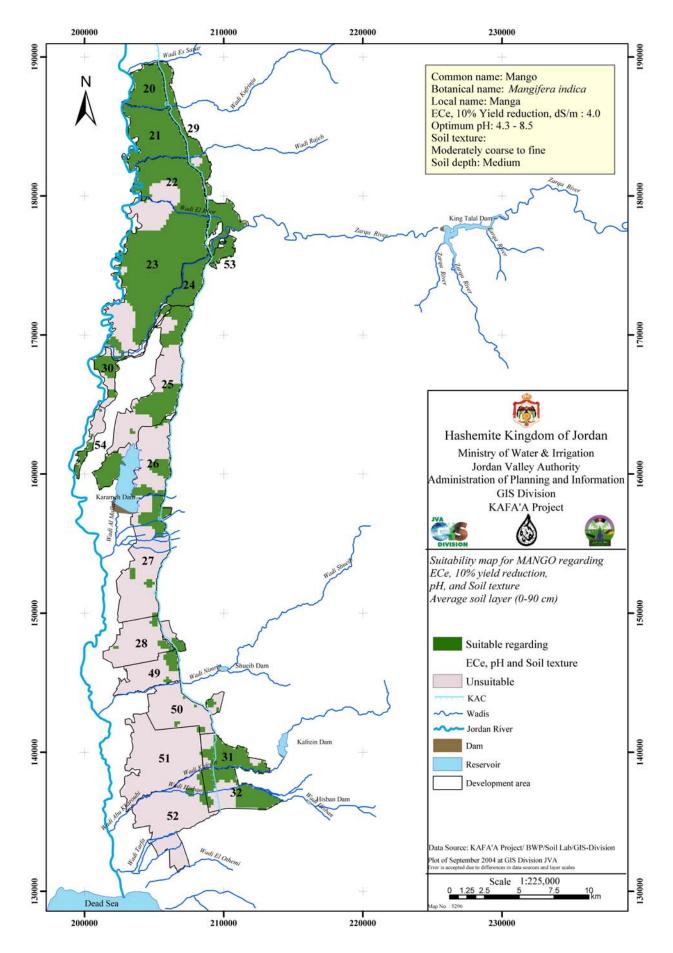


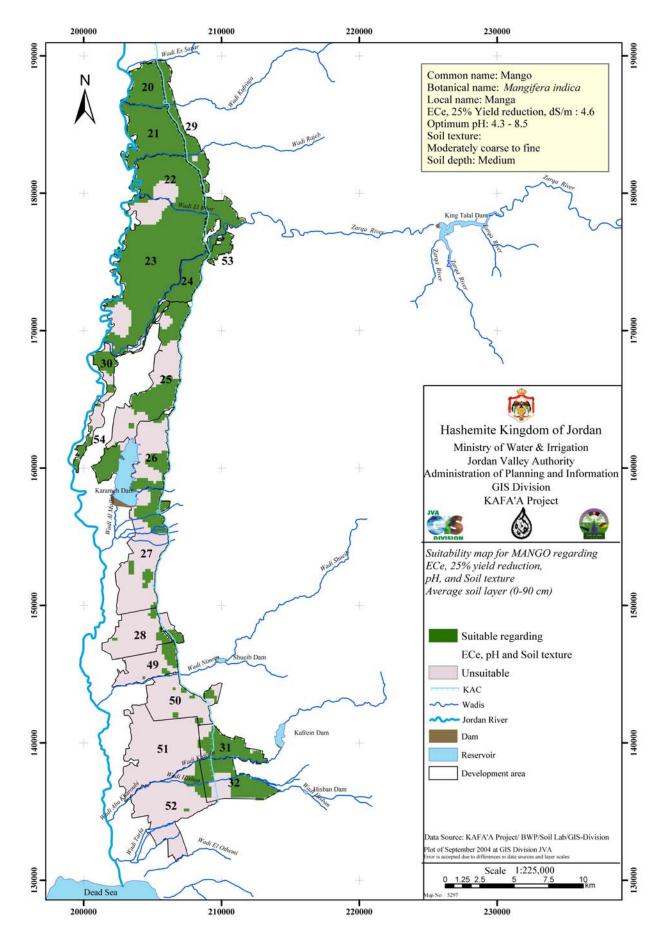


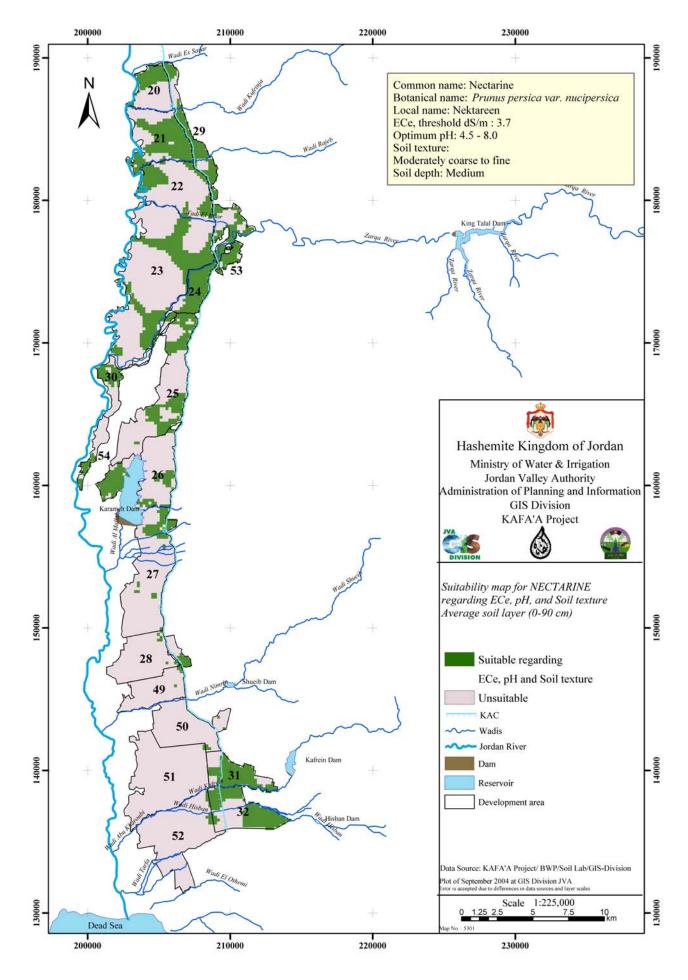


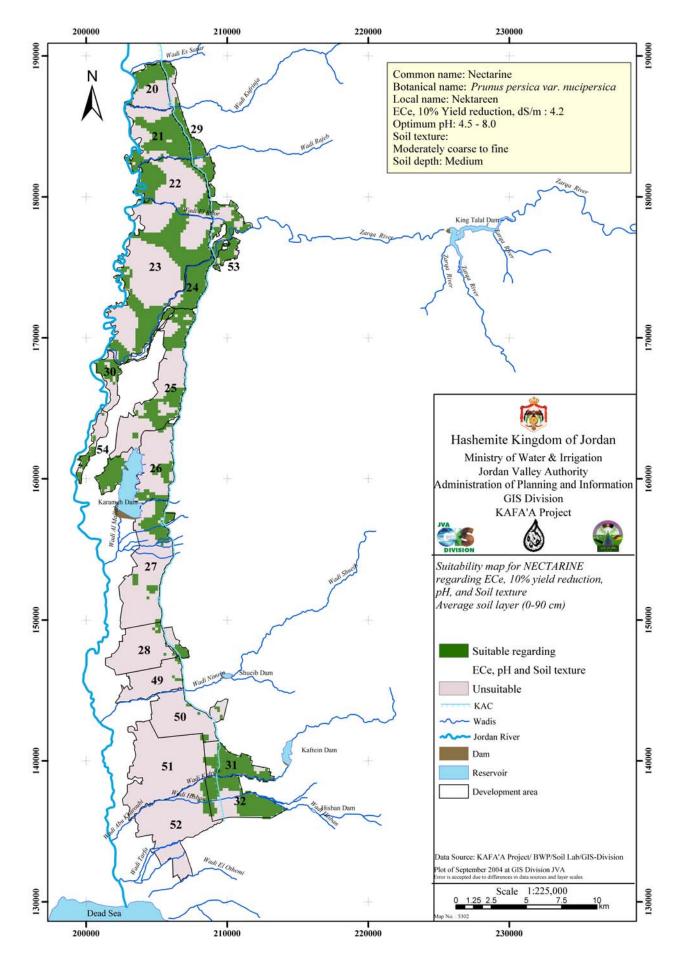


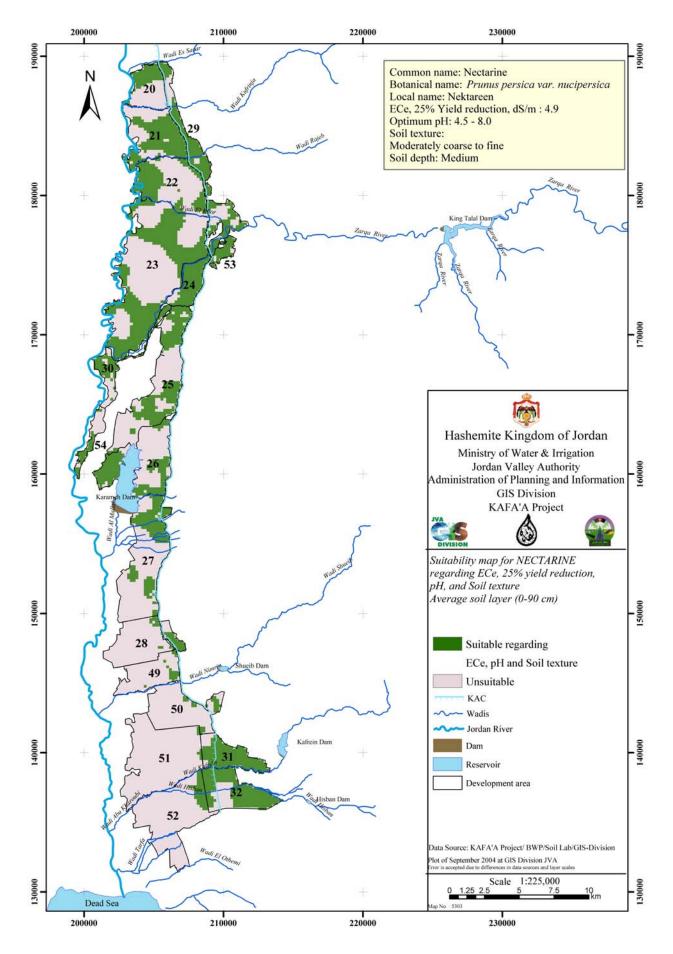


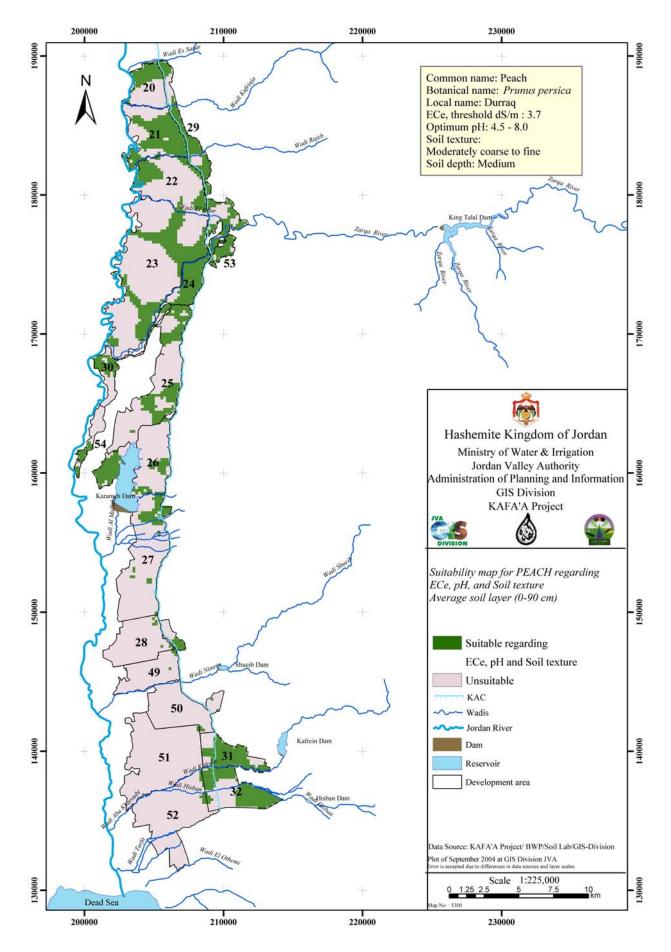


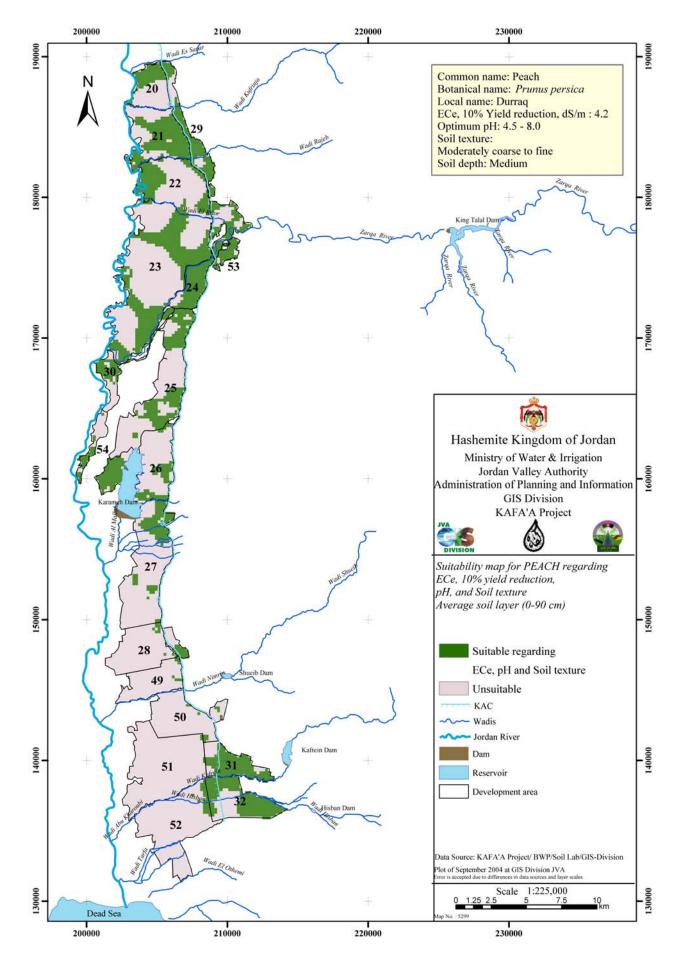


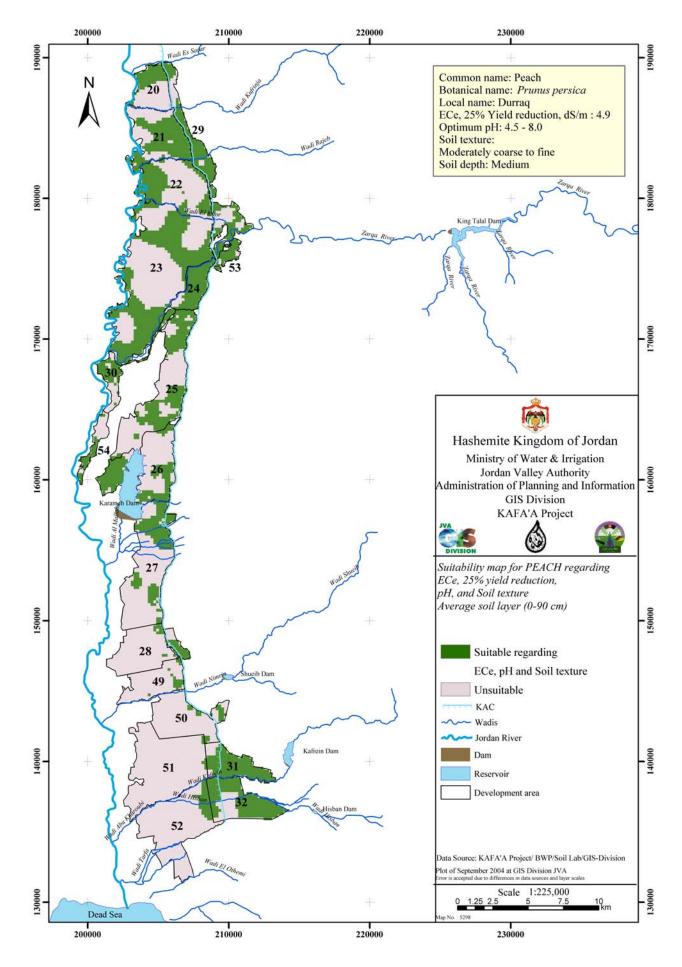


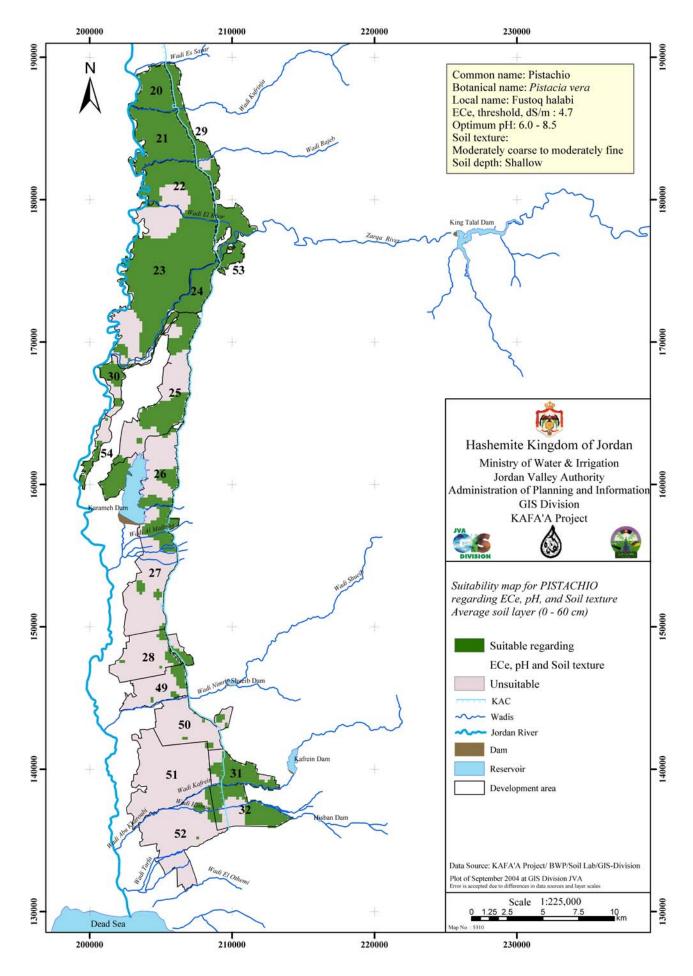


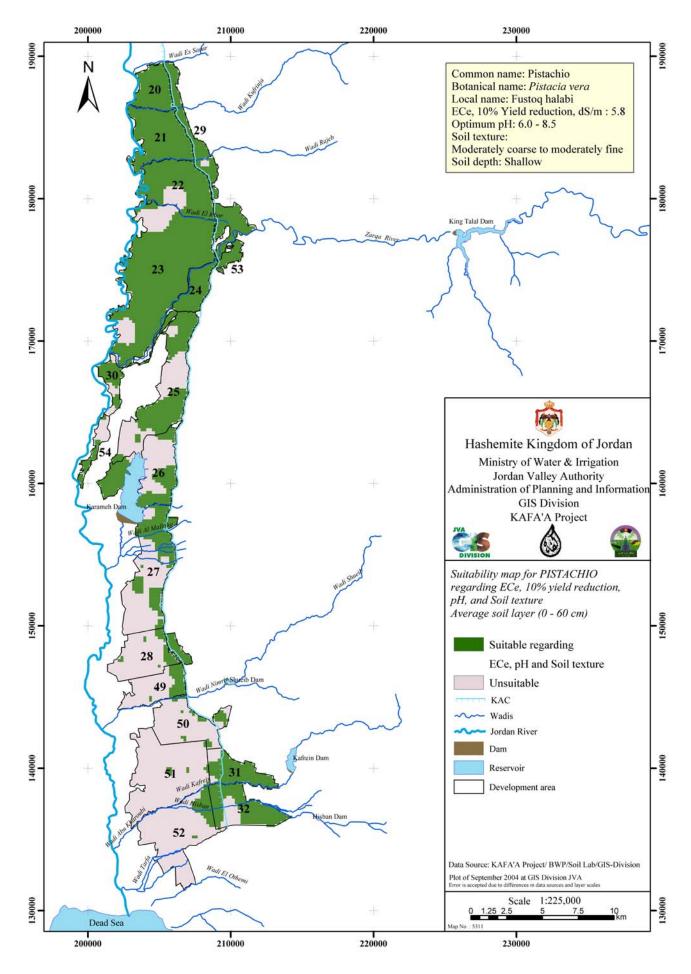


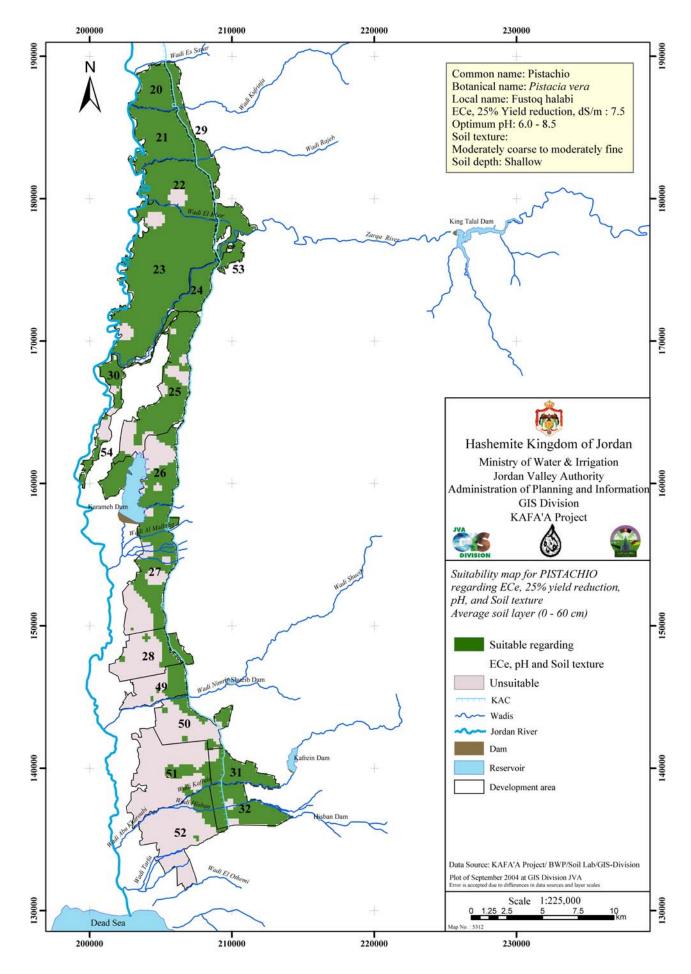


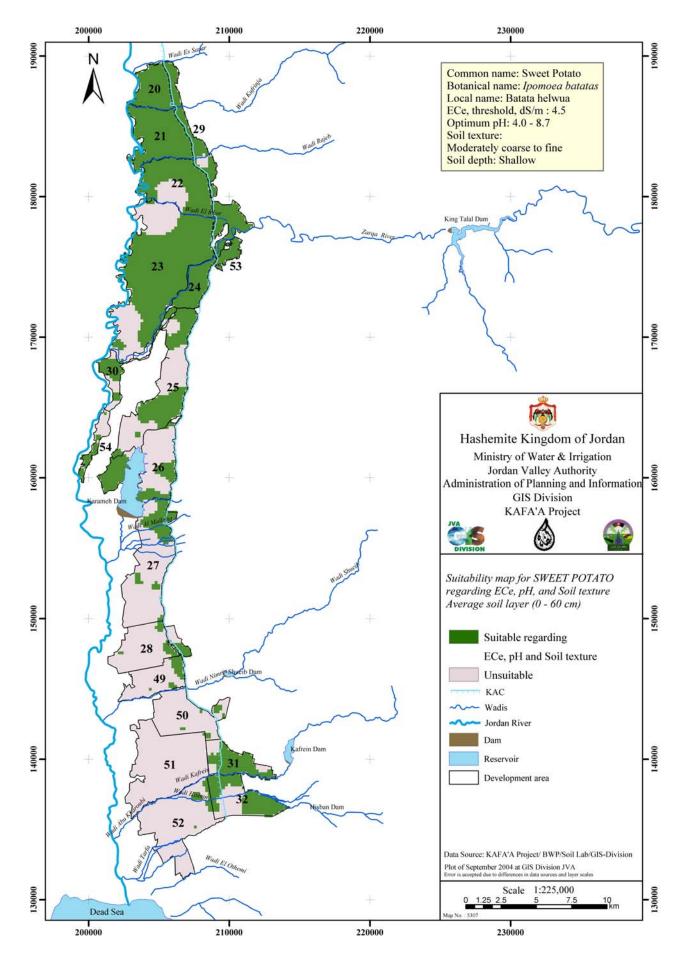


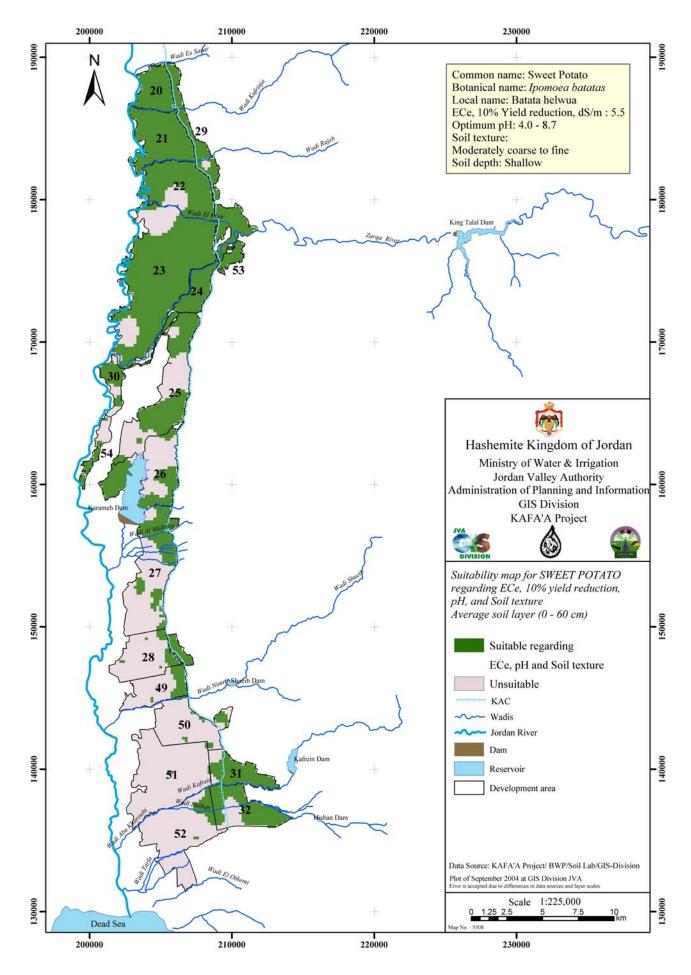


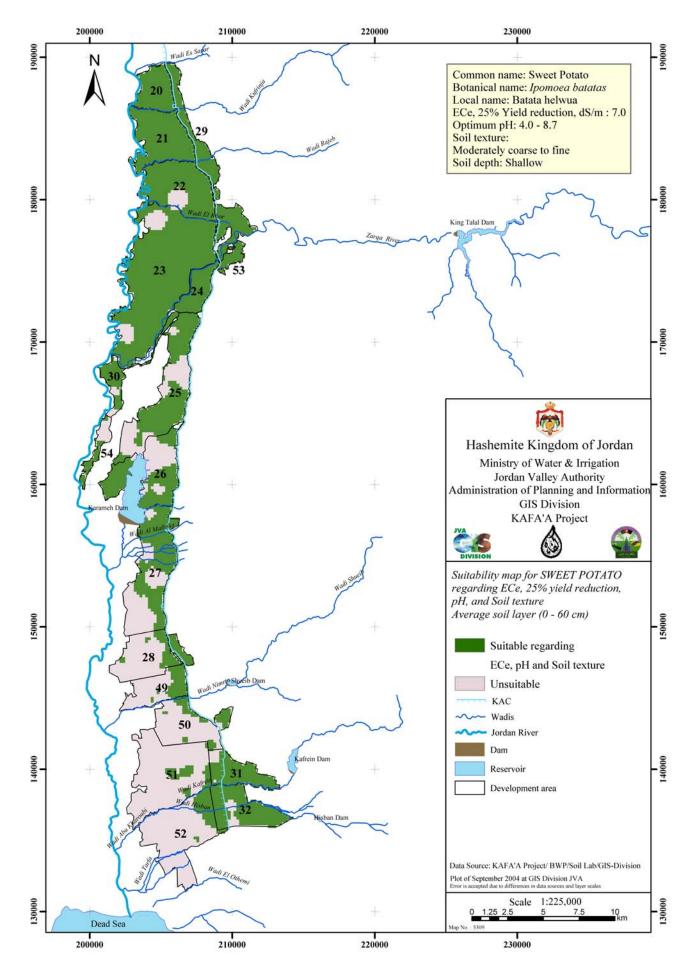












Appendix III Tables to determine the quality of water for irrigation ¹

Symbol		Meaning	Units	
	r	Total Salinity	<u>I</u>	
a. EC	Elect	ric conductivity	mmhos/cm, µmhos/cm, dS/m	
b. TDS	Total	dissolved solids	mg/l, ppm	
	P.	Sodium Hazar	<u>.</u>	
a. SAR	Sodiun	n adsorption ratio		
b. SSP	Soluble	sodium percentage		
Determination	Symbol	Unit of measure	Atomic weight	
Constituents				
(1) cations				
calcium	Ca	mol/m ³	40.1	
magnesium	Mg	mol/m ³	24.3	
sodium	Na	mol/m ³	23.0	
potassium	K	mol/m ³	39.1	
(2) anions	(2) anions			
bicarbonate	HCO3	mol/m ³	61.0	
sulphate	SO4	mol/m ³	96.1	
chloride	Cl	mol/m ³	35.5	
carbonate	CO3	mol/m ³	60.0	
nitrate	NO3	mg/L	62.0	
Trace Elements				
boron	В	mg/L	10.8	
		Conversions		
	1 dS/	m = 1 mmhos/cm = 100	00 μmhos/cm	
		1 mg/l = 1 ppm		
		g/l) ‰ EC (dS/m) x 640 g/l ‰ EC (dS/m) x 800		
		DS (lbs/ac-ft) % TDS (n)		
Concentr		. , .	(m3) times the atomic weight	
um of cations/anions				
q/l) ‰ EC (dS/m) x 10				
Key mg/l = milligrams per ppm = parts per mill				

Long- term use ng/L) 5.0 0.10 0.10 0.75	Short-term use (mg/L) 20 2.0 0.5 2.0	RemarksCan cause nonproductivity in acid soils, but soils at pH 5.5 to 8.0 will precipitate the ion and eliminate toxicity.Toxicity to plants varies widely, ranging from 12 mg/L for Sudan grass to less than 0.05 mg/L for rice.Toxicity to plants varies widely, ranging from 5 mg/L for kale to 0.5 mg/L for bush beans.Essential to plant growth, with optimum yields for many
0.10 0.10 0.75	2.0 0.5	 8.0 will precipitate the ion and eliminate toxicity. Toxicity to plants varies widely, ranging from 12 mg/L for Sudan grass to less than 0.05 mg/L for rice. Toxicity to plants varies widely, ranging from 5 mg/L for kale to 0.5 mg/L for bush beans. Essential to plant growth, with optimum yields for many
0.10	0.5	Sudan grass to less than 0.05 mg/L for rice.Toxicity to plants varies widely, ranging from 5 mg/L for kale to 0.5 mg/L for bush beans.Essential to plant growth, with optimum yields for many
0.75		kale to 0.5 mg/L for bush beans.Essential to plant growth, with optimum yields for many
	2.0	
		obtained at a few-tenths mg/L in nutrient solutions. Toxic to many sensitive plants (e.g., citrus) at 1 mg/L. Most grasses relatively tolerant at 2.0 to 10 mg/L.
0.01	0.05	Toxic to beans, beets, and turnips at concentrations as low as 0.1 mg/L in nutrient solution. Conservative limits recommended.
0.1	1.0	Not generally recognized as essential growth element. Conservative limits recommended due to lack of knowledge on toxicity to plants.
0.05	5.0	Toxic to tomato plants at 0.1 mg/L in nutrient solution. Tends to be inactivated by neutral and alkaline soils.
0.2	5.0	Toxic to a number of plants at 0.1 to 1.0 mg/L in nutrient solution.
1.0	15.0	Inactivated by neutral and alkaline soils.
5.0	20.0	Not toxic to plants in aerated soils, but can contribute to soil acidification and loss of essential phosphorus and molybdenum.
5.0	10.0	Can inhibit plant cell growth at very high concentrations.
2.5	2.5	Tolerated by most crops at up to 5 mg/L; mobile in soil. Toxic to citrus at low doses < recommended limit is 0.075 mg/L.
0.2	10.0	Toxic to a number of crops at a few-tenths to a few mg/L in acid soils.
0.01	0.05	Nontoxic to plants at normal concentrations in soil and water. Can be toxic to livestock if forage is grown in soils with high levels of available molybdenum.
(0 (2 (0.1 .05 0.2 1.0 5.0 2.5 0.2	$\begin{array}{c ccccc} 0.1 & 1.0 \\ 0.05 & 5.0 \\ 0.2 & 5.0 \\ 0.2 & 5.0 \\ 0.2 & 5.0 \\ 0.2 & 0.0 \\ 0.2 $

Table 3.	Table 3. Recommended limits for constituents in reclaimed water for irrigation.(Adapted from Rowe and Abdel-Magid, 1995)				
Nickel (Ni)	0.2	2.0	Toxic to a number of plants at 0.5 to 1.0 mg/L; reduced toxicity at neutral or alkaline pH.		
Selenium (Se)	0.02	0.02	Toxic to plants at low concentrations and to livestock if forage is grown in soils with low levels of added selenium.		
Vanadium (V)	0.1	1.0	Toxic to many plants at relatively low concentrations.		
Zinc (Zn)	2.0	10.0	Toxic to many plants at widely varying concentrations; reduced toxicity at increased pH (6 or above) and in fine- textured or organic soils		

Table 4. Permissible limits for classes of irrigation water.(From James et al., 1982)							
Classes of water	Concentration, total dissolved solids				Concen	oncentration	
	Electrical conductivity µmhos*	Gravimetric ppm	Sodium %		Chloride (Cl) mg/1	Sulfates (SO4) me/1	
Class 1, Excellent	250	175	20		4	4	
Class 2, Good	250-750	175-525	20-40		4-7	4-7	
Class 3, Permissible1	750-2000	525-1400	40-60		7-12	7-12	
Class 4, Doubtful2	2000-3000	1400-2100	60-80		12-20	12-20	
Class 5, Unsuitable2	3000	2100	80		20	20	
* Micromhos/cm at 25 degrees C. 1Leaching needed if used 2Good drainage needed and sensitive plants will have difficulty obtaining stands							

Table 5. The sodium hazard of water based on SAR Values.				
SAR values	Sodium hazard of water	Comments		
1-10	Low	Use on sodium sensitive crops such as avocados must be cautioned.		
10 - 18	Medium	Amendments (such as Gypsum) and leaching needed.		
18 - 26	High	Generally unsuitable for continuous use.		
> 26	Very High	Generally unsuitable for use.		

Table 6. Irrigation water salinity tolerances for different crops. (Adapted from Ayers and Westcot, 1976)				
Сгор	Yi	eld poten	tial, EC _{iw}	7
	100%	90%	75%	50%
Field crops				
Barley	5.0	6.7	8.7	12.0
Beans (field)	0.7	1.0	1.5	2.4
Broad beans	1.1	1.8	2.0	4.5
Corn	1.1	1.7	2.5	3.9
Cotton	5.1	6.4	8.4	12.0
Cowpeas	0.9	1.3	2.1	3.2
Flax	1.1	1.7	2.5	3.9
Groundnut	2.1	2.4	2.7	3.3
Rice (paddy)	2.0	2.6	3.4	4.8
Safflower	3.5	4.1	5.0	6.6
Sesbania	1.5	2.5	3.9	6.3
Sorghum	2.7	3.4	4.8	7.2
Soybean	3.3	3.7	4.2	5.0
Sugarbeet	4.7	5.8	7.5	10.0
Wheat	4.0	4.9	6.4	8.7
Vegetable crops				
Beans	0.7	1.0	1.5	2.4
Beets	2.7	3.4	4.5	6.4
Broccoli	1.9	2.6	3.7	5.5
Cabbage	1.2	1.9	2.9	4.6
Cantaloupe	1.5	2.4	3.8	6.1
Carrot	0.7	1.1	1.9	3.1
Cucumber	1.7	2.2	2.9	4.2
Lettuce	0.9	1.4	2.1	3.4
Onion	0.8	1.2	1.8	2.9
Pepper	1.0	1.5	2.2	3.4
Potato	1.1	1.7	2.5	3.9
Radish	0.8	1.3	2.1	3.4
Spinach	1.3	2.2	3.5	5.7
Sweet corn	1.1	1.7	2.5	3.9
Sweet potato	1.0	1.6	2.5	4.0

Сгор	Y	ield poten	tial, ECiv	V
Tomato	1.7	2.3	3.4	5.0
Forage crops				
Alfalfa	1.3	2.2	3.6	5.9
Barley hay	4.0	4.9	6.3	8.7
Bermuda grass	4.6	5.7	7.2	9.8
Clover, berseem	1.0	2.1	3.9	6.8
Corn (forage)	1.2	2.1	3.5	5.7
Harding grass	3.1	3.9	5.3	7.4
Orchard grass	1.0	2.1	3.7	6.4
Perennial rye	3.7	4.6	5.9	8.1
Soudan grass	1.9	3.4	5.7	9.6
Tall fescue	2.6	3.9	5.7	8.9
Tall wheat grass	5.0	6.6	9.0	13.0
Trefoil, big	1.5	1.9	2.4	3.3
Trefoil, small	3.3	4.0	5.0	6.7
Wheat grass	5.0	6.0	7.4	9.8
Fruit crops				
Almond	1.0	1.4	1.9	2.7
Apple, pear	1.0	1.6	2.2	3.2
Apricot	1.1	1.3	1.8	2.5
Avocado	0.9	1.2	1.7	2.4
Date Palm	2.7	4.5	7.3	12.0
Fig, olive, pomegranate	1.8	2.6	3.7	5.6
Grape	1.0	1.7	2.7	4.5
Grapefruit	1.2	1.6	2.2	3.3
Lemon	1.1	1.6	2.2	3.2
Orange	1.1	1.6	2.2	3.2
Peach	1.1	1.4	1.9	2.7
Plum	1.0	1.4	1.9	2.8
Strawberry	0.7	0.9	1.2	1.7
Walnut	1.1	1.6	2.2	3.2
¹ Based on the electrical conductivity of the irrigation water (EC_{iw}) measured in mmhos/cm.				

	Maximum Cl ⁻ c	oncentratio	
Сгор	without loss in yield		
	mol/m ³	ppm	
Strawberry	10	350	
Bean	10	350	
Onion	10	350	
Carrot	10	350	
Radish	10	350	
Lettuce	10	350	
Turnip	10	350	
Rice, paddy	30d	1,050	
Pepper	15	525	
Clover, strawberry	15	525	
Clover, red	15	525	
Clover, alsike	15	525	
Clover, ladino	15	525	
Corn	15	525	
Flax	15	525	
Potato	15	525	
Sweet Potato	15	525	
Broad bean	15	525	
Cabbage	15	525	
Foxtail, meadow	15	525	
Celery	15	525	
Clover, Berseem	15	525	
Orchardgrass	15	525	
Sugarcane	15	525	
Trefoil, big	20	700	
Lovegras	20	700	
Spinach	20	700	
Alfalfa	20	700	
Sesbaniac	20	700	
Cucumber	25	875	
Tomato	25	875	
Broccoli	25	875	

Сгор	Maximum Cl ⁻ co without loss	
	mol/m ³	ppm
Squash, scallop	30	1,050
Vetch, common	30	1,050
Wild rye, beardless	30	1,050
Sudan grass	30	1,050
Wheat grass, standard crested	35	1,225
Beet, redc	40	1,400
Fescue, tall	40	1,400
Squash, zucchini	45	1,575
Hardinggrass	45	1,575
Cowpea	50	1,750
Trefoil, narrow-leaf bird's foot	50	1,750
Ryegrass, perennial	55	1,925
Wheat, Durum	55	1,925
Barley (forage)c	60	2,100
Wheatc	60	2,100
Sorghum	70	2,450
Bermuda grass	70	2,450
Sugar beetc	70	2,450
Wheat grass, fairway crested	75	2,625
Cotton	75	1,625
Wheat grass, tall	75	2,625
Barleyc	80	2,800
a These data serve only as a guideline to rela tolerances vary, depending upon climate, s b Cl- concentrations in saturated-soil of c Less tolerant during emerge	soil conditions and cultu extracts sampled in the p	iral practices.

c Less tolerant during emergence and seedling stage. d Values for paddy rice refer to the Cl- concentration in the soil water during the flooded growing conditions.

Table 8. Hazardous chloride levels in soils based on saturation extracts for various fruit varieties and rootstocks. (Adapted from Cuena, 1989)			
Variety of Rootstock	Chloride (meq/l) Saturation Extract		
Citrus rootstocks			
Rungpur lime, Cleopatra mandarin	25		
Rough lemon, Tangelo. Sour orange	15		
Sweet Orange, Citrange	10		
Stone fruits rootstocks			
Marina	25		
Lovel, Shalil	10		
Yunnan	7		
Avocado rootstocks			
West Indian	8		
Mexican	5		
Grape varieties			
Thompson seedless, Perlette	25		
Cardinal, Black Rose	10		
Strawberry	5-8		

Table 9. Limits of boron in irrigation water. (Leeden, et al., 1990)					
A. Permissible Limits (Boron in parts per million)					
Class of water Crop group					
	Sensitive	Semi tolerant	Tolerant		
Excellent	< 0.33	< 0.67	<1.00		
Good	0.33 to 0.67	0.67 to 1.33	1.00 to 2.00		
Permissible	0.67 to 1.00	1.33 to 2.00	2.00 to 3.00		
Doubtful	1.00 to 1.25	2.00 to 2.50	3.00 to 3.75		
Unsuitable	>1.25	>2.50	>3.75		

B. Crop groups of boron tolerance (in each group, the plants first names are considered as being more tolerant; the last names, more sensitive.)

sensitive.)				
Sensitive	Semi tolerant	Tolerant		
Pecan	Sunflower (native)	Athel (Tamarix		
Walnut (Black, Persian, or	Potato	aphylla)		
English)	Cotton (Acala and	Asparagus		
Jerusalem-artichoke	Pima)	Palm (Phoenix		
Navy bean	Tomato	canariensis)		
American elm	Sweetpea	Date palm (P.		
Plum	Radish	dactylifera)		
Pear	Field pea	Sugar beet		
Apple	Ragged Robin rose	Mangel		
Grape (Sultania and	Olive	Garden beet		
Malaga)	Barley	Alfalfa		
Kadota fig	Wheat	Gladiolus		
Persimmon	Corn	Broadbean		
Cherry	Milo	Onion		
Peach	Oat	Turnip		
Apricot	Zinnia	Cabbage		
Thornless blackberry	Pumpkin	Lettuce		
Orange	Bell pepper	Carrot		
Avocado	Sweet potato			
Grapefruit	Lima bean			
Lemon				

Table 10. Relative susceptibility of crops to foliar injury from saline sprinkling waters. (Tanji, 1990)Na or Cl concentration (mol/m³) causing foliar injury					
Almond	Grape	Alfalfa	Cauliflower		
Apricot	Pepper	Barley	Cotton		
Ĉitrus	Potato	Corn	Sugar beet		
Plum	Tomato	Cucumber	Sunflower		
		Safflower			
		Sesame			
		Sorghum			

These data are presented only as general guidelines for daytime sprinkling.

Table 11. Leaching requirement* as related to the electrical conductivities of the irrigation and drainage water.					
Electrical conductivity of irrigation	Leaching requirement based on the indicated maximum values for the conductivity of the drainage water at the bottom of the root zone				
water (mmhos/cm)	4 mmhos/cm	8 mmhos/cm	12 mmhos/cm	16 mmhos/cm	
	Percent	Percent	Percent	Percent	
0.75	13.3	9.4	6.3	4.7	
1.00	25.0	12.5	8.3	6.3	
1.25	31.3	15.6	10.4	7.8	
1.50	37.5	18.7	12.5	9.4	
2.00	50.0	25.0	16.7	12.5	
2.50	62.5	31.3	20.8	15.6	
3.00	75.0	37.5	25.0	18.7	
5.00		62.5	41.7	31.2	
* Fraction of the applied irrigation water that must be leached through the root zone expressed as percent.					

¹ http://agnews.tamu.edu/drought/DRGHTPAK/SALINITY.HTM