

Energy Sector Capacity Building (ESCB)

PV Plant Grid Impact Study CYME Training No. 1

Dynamic Studies

5 December 2016

Quasi steady state analysis-Time series analysis

- Why is quasi steady state analysis needed ?
- Need to study coincident PV analysis
- Help identify the time dependent aspects of power flowing in distribution systems
- Captures interaction between changing load and PV output.
- 8760 (hourly analysis) done for this study.

Quasi steady state analysis-Long term dynamics

- Setting up the model/load files
- Defining load and generation curves in the library
- Assigning the curves
- Visualizing results
 - Voltage profile of the feeder
 - Power flow at the substation
 - Power factor at the substation
 - Voltage regulation and status of voltage regulating equipment ?

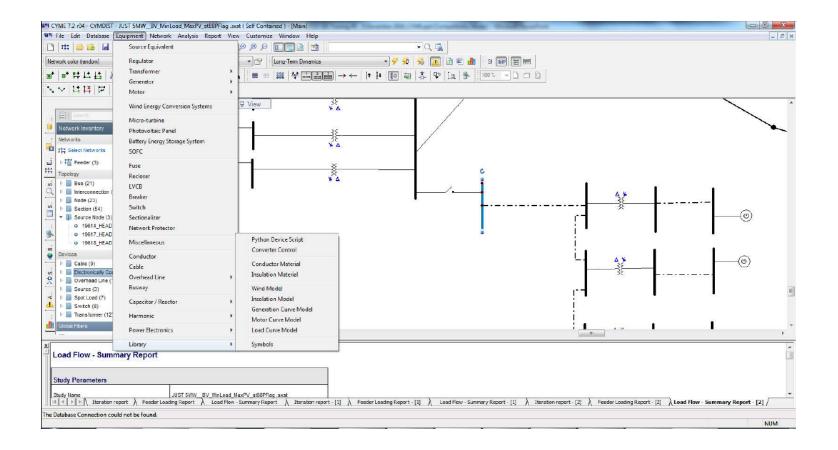
Quasi steady state analysis-Long term dynamics

- Setting up the model/load files
- Defining load and generation curves in the library
- Assigning the curves
- Visualizing results
 - Voltage profile of the feeder
 - Power flow at the substation
 - Power factor at the substation
 - Voltage regulation and status of voltage regulating equipment ?

Setting up the Generation File

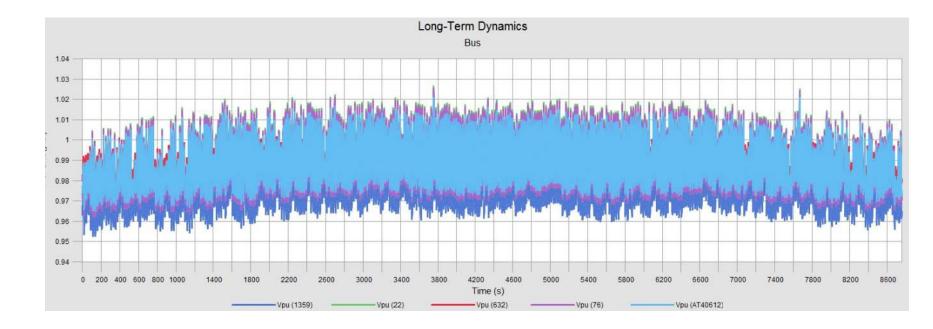
- Start with IDECO 'Generation Profile INV1.csv'
- Create Excel file 8760 with columns Time, Power, PF. Normalize to Peak Production value.
- Save as a .txt file

Setting up the Load File


- Start with 8760 Load Profile from Day 1 Training.
- Normalize to Peak Load value
- Save as a .txt file

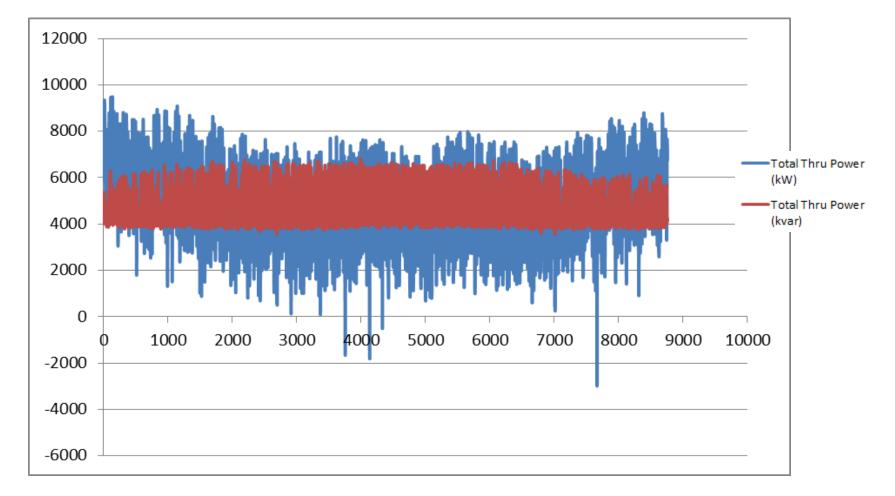
ection ID	Electronically Coupled Ge	nerator		
INV1	Id:	21*STP60	-	
	Number:	INV1		
nase	Status:	Connected •		
✓A ✓B ✓C	Location:	· · · · ·	Stage:	Undefined 💌
one	Long-Term Dynamic	Curve		
UNDEFINED	Adjustment:	No Adjustment	•	
ivironment	Curve Type:	P (DC Generation)	•	
Unknown	Curve Model ID:		-	Show
evices		Limit output power based on inverter rating		
Add Remove Nodes Electronically Coupled Generator Inverter Inverter Controls Long-Term Dynamic Curve Harmonic Model				

Long term dynamics-Adding curves to the library

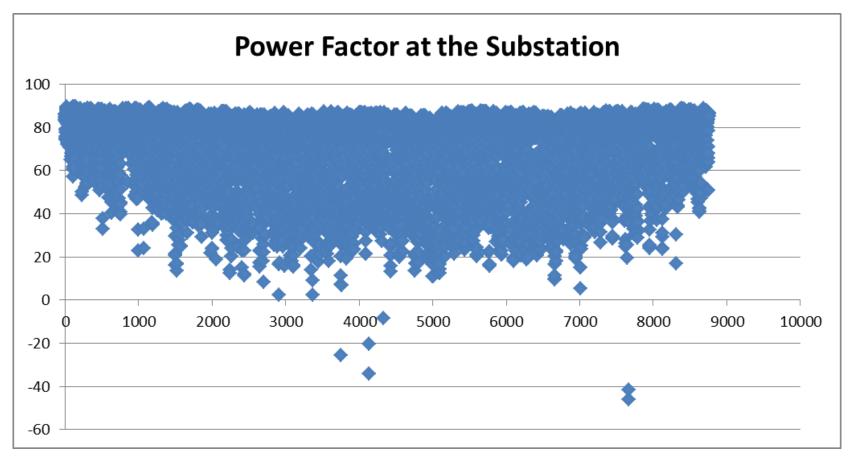


Long term dynamics-Assign curves to loads and generators

ame	Load Flow Load	Allocation	Long-Term Dynamics	Harmonic	Propertie	es
Iommercial Industrial Other	Long-Term Dy	namics Curv	e Model			
lesidential omestic	Adjustment:	Adjust us	ing Load Curve Model		•	
	Curve Type:	P, PF			•	
	Model Id:	DEFAULT			- 2	;



Visualizing results-Voltage Profile - EDCO



Visualizing results-Active power at the substation - EDCO

Visualizing the results – Power Factor at the Substation – EDCO

Work Flow

- Day 1:
 - Setting up the model
 - Substation Transformer Assumptions
 - Exercise 1.1: Calculating substation short circuit levels
 - Exercise 1.2: Populate PV inverter PF table
 - Discussing IRR-DCC-MV 5 Voltage Requirements
 - Load Allocation
 - Steady state snapshot analysis, Grid code compliance
- Day 2:
 - Exercise 1.3: Quasi steady state analysis-Long term dynamics

- Exercise 1.4: Short Circuit Study

Comparing results of shadow study

- Compute fault current contribution from the project
- What is the SC fault contribution of the inverter?
- Analyze fault contribution at all buses before and after the project is added
- What do you see at the PCC?

SMA Solar Technology AG

3 Short-Circuit Contribution for SMA Sunny Tripower Inverters

3 Short-Circuit Contribution for SMA Sunny Tripower Inverters

A on international level, the standard IEC 01 400-21 describes testing procedures for wind farms that can be easily applied to PV inverters. In some countries like Germany (TR3, Technische Richtlinien für Erzeugungseinheiten Teil 3, RGW e.V., 2013) and laby (CGI 0-21 and CEI 0-10) there are specific standard requirements for testing the copobility of rinding through "gird valage dips.

The instantaneous values of AC currents and AC voltages are recorded synchronously with 50 kHz (20 µs). Positive sequence fundamentals based on measurement of instantaneous voltages and currents are calculated according to IEC of 1400-21 (2008). All results are measured as half periods 71MS values.

The following table shows the test results for each SMA inverter. Note that the ip values are given as an amplitude, whereas the values for $l_{\rm b}^{\prime\prime}$ and $l_{\rm b}$ are RMS.

Inverter type	Short-circuit surge current i _p	Initial symmetrical		d short-circuit at I _L (A)	Maximal current I _{max} (A)
	(A)	short-circuit current I _k " (A)	Mode 1	Mode 2	indx
STP 5000TL-20	56.56	9.71	7.3	0	7.3
STP 6000TL-20	59.39	9.79	8.7	0	8.7
STP 7000TL-20	64.76	14.07	10.2	0	10.2
STP 8000TL-20	67.65	14.19	11.6	0	11.6
STP 9000TL-20	71.52	14.40	13.1	0	13.1
STP 10000TL-20	77.65	15.98	14.5	0	14.5
STP 12000TL-20	76.36	19.14	17.4	0	17.4
STP 10000TL-10	72.99	20.60	16.0	0	14.5
STP 12000TL-10	76.03	20.89	19.2	0	17.4
STP 15000TL-10	92.85	26.45	24.0	0	21.7
STP 17000TL-10	98.94	26.88	24.6	0	24.6
STP 15000TLEE-10	94.94	25.85	24.0	0	21.7
STP 20000TLEE-10	106.84	31.14	29	0	29
STP 20000TL-30	98.58	31.07	29	0	29
STP 25000TL-30	116.37	40.06	36.2	0	36.2
STP 12000TL-US-10	81.30	17.27	14.4	0	14.4
STP 15000TL-US-10	89.29	20.57	18	0	18
STP 20000TL-US-10	101.44	26.46	24	0	24
STP 24000TL-US-10	111.92	30.91	29	0	29
STP 30000TL-US-10	181	50.68	36.2	0	36.2
STP 60-10 /	201.2	106.6	87	0	87
STP 60-US-10					

The values for [," and i_p were measured during the certification process by an accredited test institute (BDEW, CEI 0-16) and are comparable to the characteristic values defined in DIN/EN 60909. These values represent the maximum values of all tests.

Technical Information

lscpv-Tl-en-12

5

ection ID	Electronically Coupled Ge					
🖕 INV1 🔿	Id: 21*STP60					
•	Number:	INV1				
hase	Status:	Connected -				
☑A ☑B ☑C	Location:			Stage:	Undefined	
one	Settings					
UNDEFINED 👻	Grid-Side Output Gener	ation				
nvironment	Load Model:	DEFAULT	•			
Unknown	Rated Power:	1260.0	kVA			
	Active Generation:	1260.0	kW	G	Profiles	
evices						
🕂 Add 📼 Remove	Short-Circuit Fault Contribution					
Nodes	Percentage:	150.0	% of Rated Current 🔹			
- Electronically Coupled Generator	Current:	2727.98	A			
Inverter Controls						
Long-Term Dynamic Curve Harmonic Model						
Collapse				0	K Cancel	

DEFAULT				🔹 💠 🗹 🗕 I 🔂 🕞 l 🎒
alculation Para	meters Networks	Short-Circuit R	ating Output	
Calculation Mo				
Calculate :	Short-Circuit Leve	els at <mark>All</mark> Buses	and Nodes	Ţ.
-Fault Location				
-Fault Location	Node		INVB-1	*
		▼		•

onfiguratio	<u> </u>			+ 2 - 13 3 1
DEFAULT				
alculation	Parameters	Networks	Short-Circuit Rating	Output
Pre-Fault	Voltage			Machine Impedances
Nomin	al Voltage		•	Steady State
Tra	nsformers at M	Nominal Tap		
Security P	Factors			Include Contributions from
Kmax:	1.0	p.u.		Synchronous Generators
Kmin:	1.0	p.u.		Induction Motors
Fault Imp	edances			Induction Generators
	R	х		Electronically Coupled Generators
Zf:	0.0	0.0	 ohms 	WECS
Zg:	0.0	0.0	© p.u.	SOFC
Impedance	ce Adjustment	5		Micro Turbine
	ust Impedance			Photovoltaic
Adju	ust impedance	s	Edit	Synchronous Motors
Tourstor F	Based DG Mode	-		BESS
				Zero Sequence Line Susceptance
Voltag	e Source Behir	nd Impedanc	• •	