

Energy Sector Capacity Building (ESCB)

PV Plant Grid Impact Study
CYME Training No. 1
Load Flow Studies

5 December 2016

IDECO 5 MW Plant-Agenda

- Day 1:
 - Reviewing model and data
 - PV inverter/electrically coupled generator modeling
 - Steady state voltage regulation
 - Reactive power capability of inverters
 - Snapshot analysis
 - Comparing results of shadow study
- Day 2:
 - Grid code compliance
 - Long term dynamics
 - Reverse power flow

- Day 1:
 - Setting up the model
 - Substation Transformer Assumptions
 - Exercise 1.1: Calculating substation short circuit levels
 - Exercise 1.2: Populate PV inverter PF table
 - Discussing IRR-DCC-MV 5 Voltage Requirements
 - Load Allocation
 - Steady state snapshot analysis, Grid code compliance
- Day 2:
 - Exercise 1.3: Quasi steady state analysis-Long term dynamics
 - Exercise 1.4: Short Circuit Study
 - Comparing results of shadow study

- Day 1:
 - Setting up the model
 - Substation Transformer Assumptions
 - Exercise 1: Calculating substation short circuit levels
 - Exercise 2: Populate PV inverter PF table
 - Discussing IRR-DCC-MV 5 Voltage Requirements
 - Load Allocation
 - Steady state snapshot analysis, Grid code compliance

Setting up/reviewing model

- What is the current load and power factor assumed in the model?
 - Is this minimum or peak load?
- What is the source voltage?
- Are there any voltage regulating devices in the model?
- Run a load flow and generate the following results:
 - Load Flow Summary Report
 - Overloaded Lines & Cables Report
 - Overloaded Transformer Report
 - Voltage Profile at every point along the Feeder (p.u.)

Sample report -Summary Report: Load Flow

Total Summary	kW	kvar	kVA	PF(%)	
Sources (Swing)	8588.24	4303.41	9606.10	89.40	
Generators	0.00	0.00	0.00	0.00	
Total Generation	8588.24	4303.41	9606.10	89.40	
Load read (Non-adjusted)	8192.98	4014.42	9123.62	89.80	
Load used (Adjusted)	8193.00	4014.46	9123.66	89.80	
Shunt capacitors (Adjusted)	0.00	-277.77	277.77	0.00	
Shunt reactors (Adjusted)	0.00	0.00	0.00	0.00	
Motors	0.00	0.00	0.00	0.00	
Total Loads	8193.00	3736.69	9004.90	90.98	
Cable Capacitance	0.00	-11.65	11.65	0.00	
Line Capacitance	0.00	-305.00	305.00	0.00	
Total Shunt Capacitance	0.00	-316.65	316.65	0.00	
Line Losses	243.94	533.73	586.84	41.57	
Cable Losses	1.16	1.39	1.80	64.00	
Transformer Load Losses	82.51	348.28	357.92	23.05	
Transformer No-Load Losses	67.64	0.00	67.64	100.00	
Total Losses	395.25	883.40	967.79	40.84	

Setting up the Model: Reviewing 33 KV network

- Locate PV project in the model
- Model as ECG-suitable for load flow studies
- Verify size, PF of project
- 132 kV infeeder assumptions:

– 3 ph short circuit level at 33 KV : 986 MVA

X/R Ratio : 25

1 ph short circuit : 78 MVA

Resistance grounded : 15 ohms

Setting up the Model: Adding in the PV Inverter

- PV Plant Assumptions:
 - (4) Electronically Coupled Generators

• Rated Power: 1260 k	kVA
-----------------------	-----

- Active Power Rating: 1260 kW
- Rated Voltage: 0.4 kV
- Short Circuit Current: 122.5%

Inverter type	Short-circuit surge current ip	Initial symmetrical	Uninterrupted short-circuit current I _k (A)		Maximal current I _{max} (A)
(A)	short-circuit current I _k " (A)	Mode 1	Mode 2		
STP 5000TL-20	56.56	9.71	7.3	0	7.3
STP 6000TL-20	59.39	9.79	8.7	0	8.7
STP 7000TL-20	64.76	14.07	10.2	0	10.2
STP 8000TL-20	67.65	14.19	11.6	0	11.6
STP 9000TL-20	71.52	14.40	13.1	0	13.1
STP 10000TL-20	77.65	15.98	14.5	0	14.5
STP 12000TL-20	76.36	19.14	17.4	0	17.4
STP 10000TL-10	72.99	20.60	16.0	0	14.5
STP 12000TL-10	76.03	20.89	19.2	0	17.4
STP 15000TL-10	92.85	26.45	24.0	0	21.7
STP 17000TL-10	98.94	26.88	24.6	0	24.6
STP 15000TLEE-10	94.94	25.85	24.0	0	21.7
STP 20000TLEE-10	106.84	31.14	29	0	29
STP 20000TL-30	98.58	31.07	29	0	29
STP 25000TL-30	116.37	40.06	36.2	0	36.2
STP 12000TL-US-10	81.30	17.27	14.4	0	14.4
STP 15000TL-US-10	89.29	20.57	18	0	18
STP 20000TL-US-10	101.44	26.46	24	0	24
STP 24000TL-US-10	111.92	30.91	29	0	29
STP 30000TL-US-10	181	50.68	36.2	0	36.2
STP 60-10 / STP 60-US-10	201.2	106.6	87	0	87

- Day 1:
 - Setting up the model
 - Substation Transformer Assumptions
 - Exercise 1: Calculating substation short circuit levels
 - Exercise 2: Populate PV inverter PF table
 - Discussing IRR-DCC-MV 5 Voltage Requirements
 - Load Allocation
 - Steady state snapshot analysis, Grid code compliance

Substation Transformer Assumptions

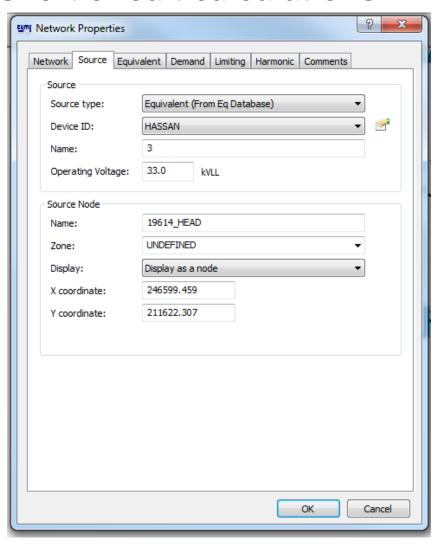
Two-Winding Transformer parameter assumptions

Voltage Rating132/33 KV

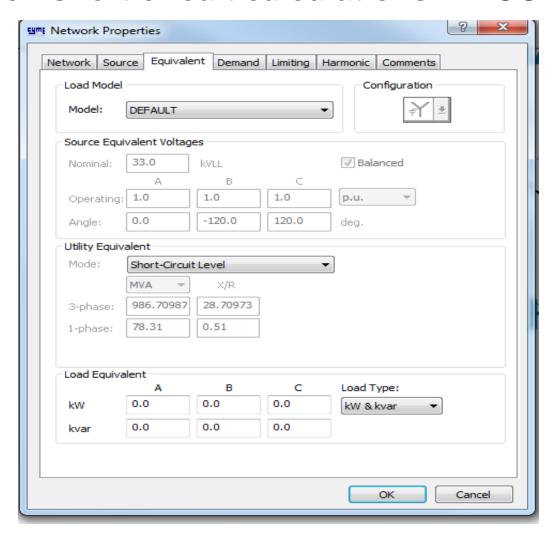
Apparent Power Rating100 MVA

Transformer Impedance10 %

- X/R Ratio: 25


- Assume Off Load Tap Changer present
- Fixed secondary taps (95% to 105%, 2.5% steps), assume
 102.5% secondary tap position

- Day 1:
 - Setting up the model
 - Substation Transformer Assumptions
 - Exercise 1.1 : Calculating substation short circuit levels
 - Load Allocation
 - Exercise 2: Populate PV inverter PF table
 - Discussing IRR-DCC-MV 5 Voltage Requirements
 - Load Allocation
 - Steady state snapshot analysis, Grid code compliance



Substation short circuit calculations-IDECO model

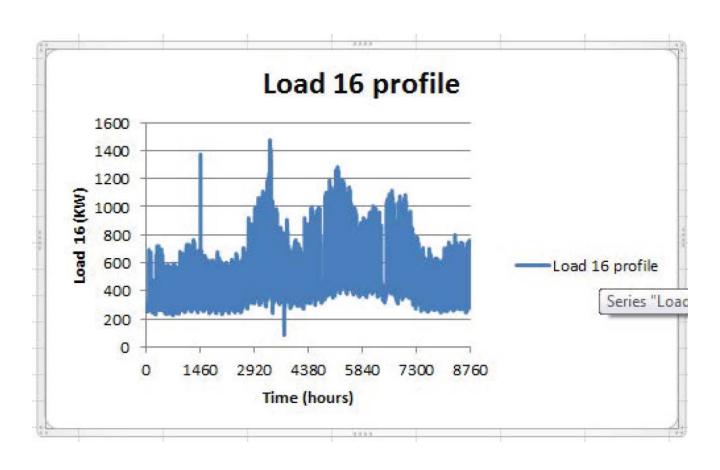
Substation short circuit calculations-IDECO model

Substation short circuit calculations-IDECO model

Exercise: Calculate short circuit MVA to model 132 KV source

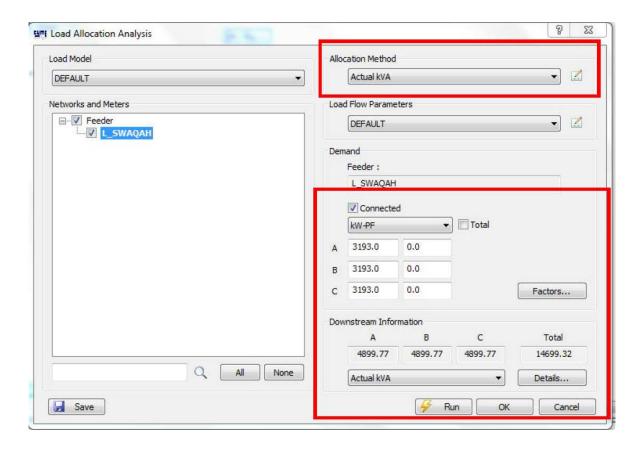
- Model 132 KV source.
- Perform fault calculations using available SC MVA.
- Model substation transformer
- Simulate fault with transformer
- Compare fault levels if 132 KV and 33KV network
- Now, assume 2.5 % secondary tap position for load flow studies

Save Base Case

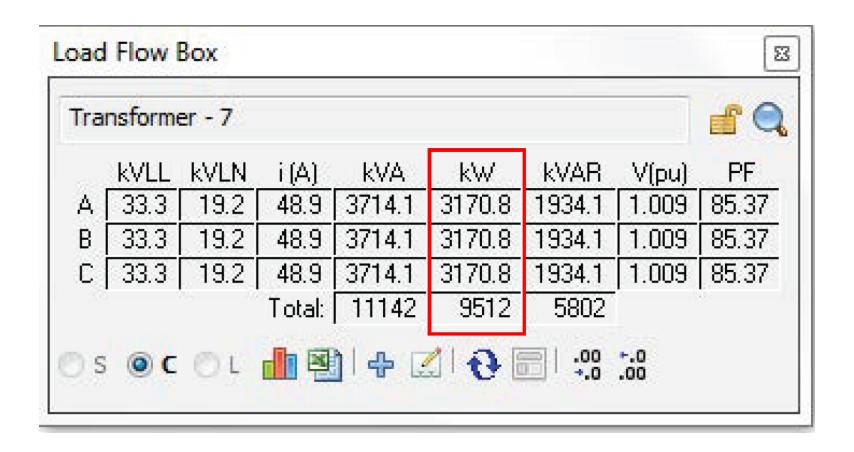

Save your model as:

- Day 1:
 - Setting up the model
 - Substation Transformer Assumptions
 - Exercise 1: Calculating substation short circuit levels
 - Load Allocation
 - Exercise 2: Populate PV inverter PF table
 - Discussing IRR-DCC-MV 5 Voltage Requirements
 - Load Allocation
 - Steady state snapshot analysis, Grid code compliance

Load profile



- Allocate the load in the circuit to match the meter demand
- Balanced/Unbalanced phase demand?
- What format is the load data available in ?
- Loads can be classified according to customer type if necessary-to assign different load factor.
- Analyze the circuit in peak and day minimum load conditions for planning purposes.



- What load data/ demand type is available?
 - Substation load data ? (EDCO)
 - AMI data ? (IDECO)
 - Data resolution?
- Other requirements
 - Load power factor
 - Transformer taps
 - Shunt capacitors
- Specify demand at the substation (P,PF),(Amps,PF)
- Fix load power factor and allow source to swing

Day 1:

- Setting up the model
- Substation Transformer Assumptions
- Exercise 1.1: Calculating substation short circuit levels
- Load Allocation
- Exercise 1.2: Populate PV inverter PF table
- Discussing IRR-DCC-MV 5 Voltage Requirements
- Load Allocation
- Steady state snapshot analysis, Grid code compliance

Reactive power capability

Exercise: Populate PF table

- Day 1:
 - Setting up the model
 - Substation Transformer Assumptions
 - Exercise 1.1: Calculating substation short circuit levels
 - Load Allocation
 - Exercise 1.2: Populate PV inverter PF table
 - Discussing IRR-DCC-MV 5 Voltage Requirements
 - Steady state snapshot analysis, Grid code compliance

Intermittent Renewable Resources-Distribution Connection Grid Code at medium voltage (IRR-DCC-MV)

- IRR-DCC-MV 5 Voltage Requirements:
 - Voltage step limit following sudden loss or start of IRR shall not exceed 3% measured at the PCC
 - Voltage Control at the PCC required
 - Power Factor Control at the PCC required (+/- 0.88 pf)
 - Full lagging capability required from 100% to 95% nominal voltage
 - Full leading capability required from 100% to 105% nominal voltage
 - OLTC required for transformers ?

- Day 1:
 - Setting up the model
 - Substation Transformer Assumptions
 - Exercise 1.1: Calculating substation short circuit levels
 - Load Allocation
 - Exercise 1.2: Populate PV inverter PF table
 - Discussing IRR-DCC-MV 5 Voltage Requirements
 - Steady state snapshot analysis, Grid code compliance

BEGIN MODELING

Load Flow Analysis Part 1 – Steady State Analysis

(4) Study Cases Created:

Case 1: Peak Load, No PV

Case 2: Peak Load, Max PV

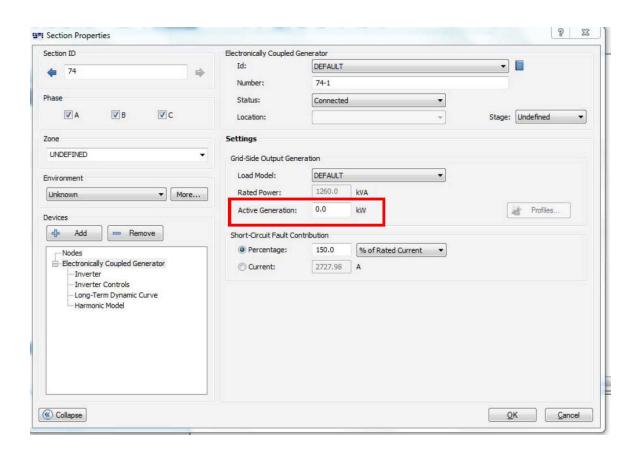
Case 3: Min Load, No PV

Case 4: Min Load, Max PV

- Power Factor Capability Analysis:
 - (3) Scenarios per Study Case
 - PV operating at 0.88 leading pf
 - PV operating at 1.0 pf
 - PV operating at 0.88 lagging pf

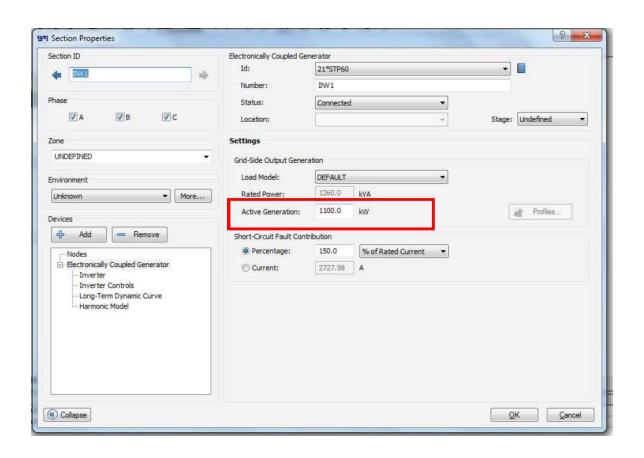
Load Flow Analysis Part 1 – Steady State Analysis

- Power Factor Capability/Control Analysis:
 - Voltage Step Limit Requirement:
 - Calculate step change in voltage between Case 1 and 2, and Case 3 and 4 for all scenarios, PCC most important, but do for all nodes
 - Losses:
 - Calculate losses for each of the runs, compare with and without PV
 - Reverse Power Flow:
 - Monitor power flow at the distribution substation for each case
 - Thermal Overloads:
 - Check overhead lines, cables, transformers against their current ratings (Rate A)

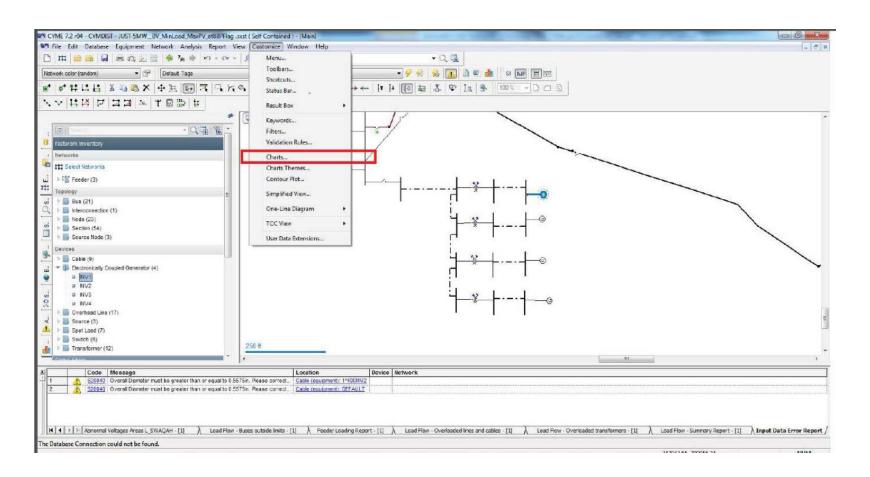


Load Flow Analysis Part 1 – Steady State Analysis

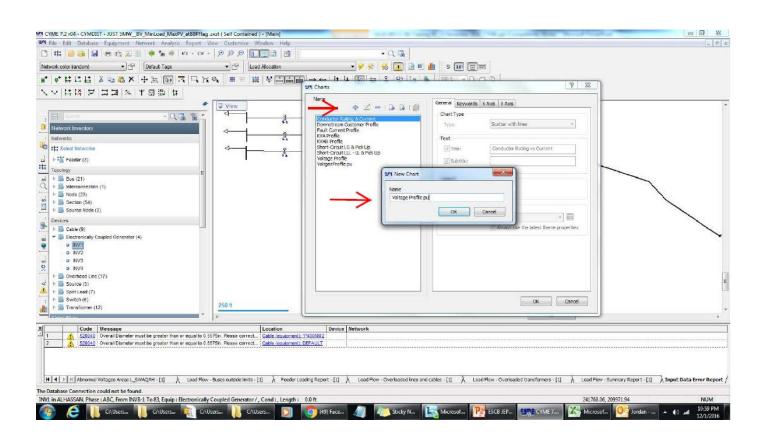
- Voltage Control Capability:
 - Study all (4) cases with the PVs operating in voltage control mode,
 determine whether voltage can be controlled to within 0.90 and 1.10 per-unit
 - Voltage Step Limit Requirement:
 - Calculate step change in voltage between Case 1 and 2, and Case 3 and 4 for all scenarios, PCC most important, but do for all nodes
 - Losses:
 - Calculate losses for each of the (12) runs, compare with and without PV
 - Reverse Power Flow:
 - Monitor power flow at the distribution substation for each case
 - Thermal Overloads:
 - Monitor power flow at the distribution substation for each case
 - PV Inverter Documentation Review:
 - Confirm PV inverters can supply full 0.88 leading reactive capability for voltages between 100% to 105%
 - Confirm PV inverters can supply full 0.88 lagging reactive capability for voltages between 100% to 95%



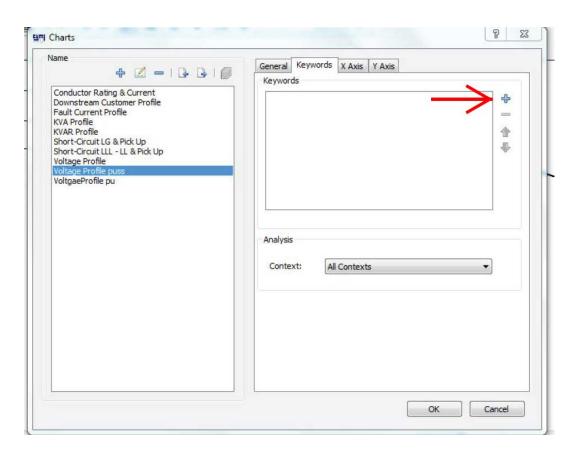
Snapshot Analysis -No PV (Basecase)



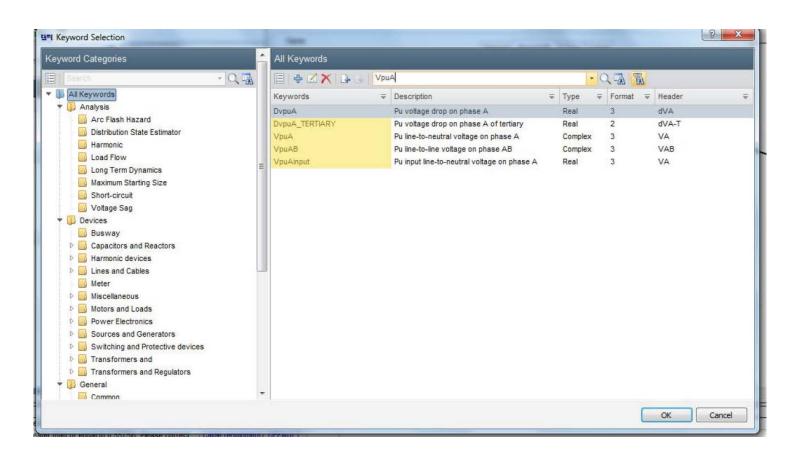
Snapshot Analysis-Max PV



Snapshot Analysis- Voltage Profile

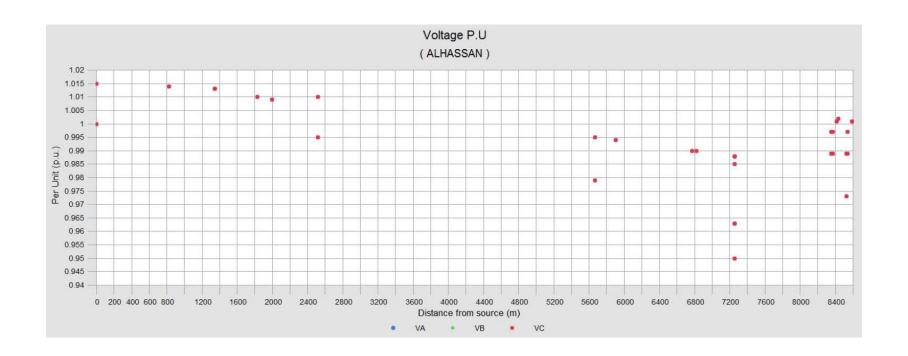


Snapshot Analysis- Voltage Profile

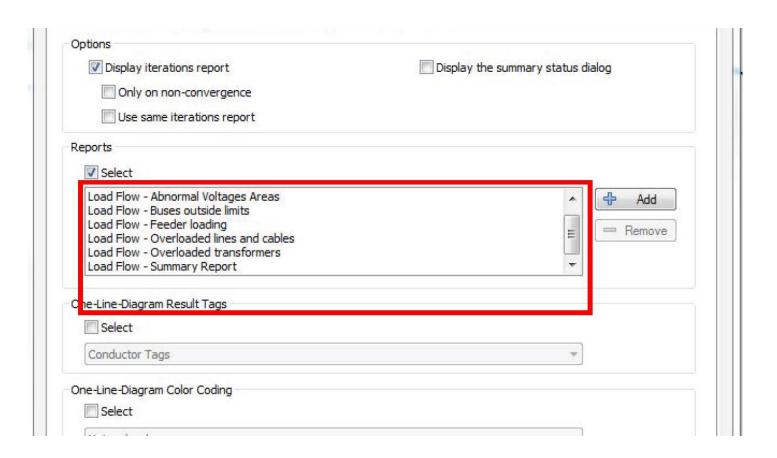


Snapshot Analysis- Voltage Profile

Snapshot Analysis- Voltage Profile

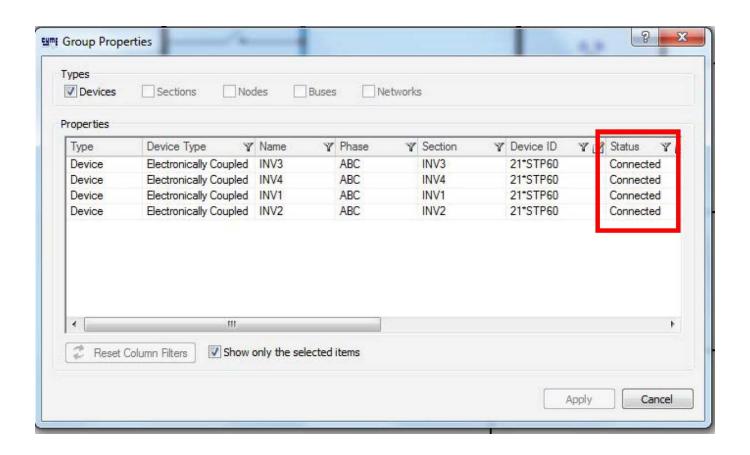


Snapshot Analysis- Voltage Profile



Snapshot Analysis- Voltage Profile

Snapshot Analysis- Exporting Reports



Step Voltage Requirement

- Calculate step voltage change at the PCC
- Analyze with no PV and Max PV
- Compare against IRR-DCC-MV 5 Voltage Requirements.

Step Voltage Requirement

Snapshot Analysis-Reverse power flow

Plot KWTOT at the substation

Snapshot Analysis

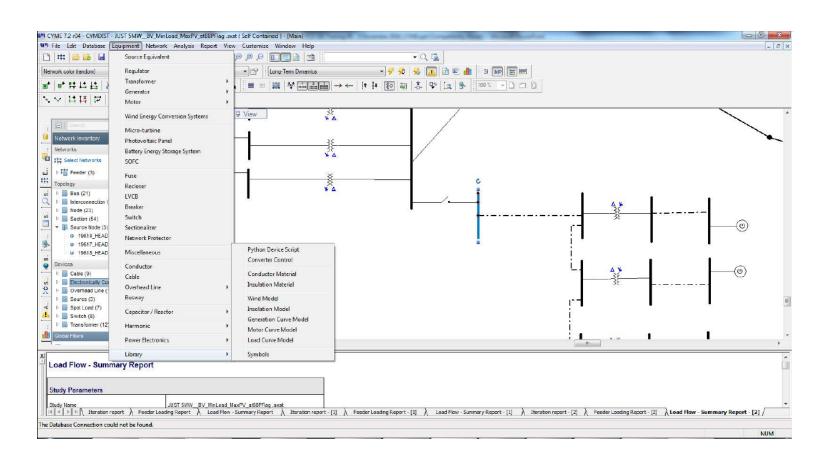
- Repeat analysis for 0.88 PF lead and lag.
- Repeat analysis for Max Load.
- Tabulate the results and compare.

Work Flow

- Day 1:
 - Setting up the model
 - Substation Transformer Assumptions
 - Exercise 1.1: Calculating substation short circuit levels
 - Exercise 1.2: Populate PV inverter PF table
 - Discussing IRR-DCC-MV 5 Voltage Requirements
 - Load Allocation
 - Steady state snapshot analysis, Grid code compliance
- Day 2:
 - Exercise 1.3: Quasi steady state analysis-Long term dynamics
 - Exercise 1.4: Short Circuit Study
 - Comparing results of shadow study

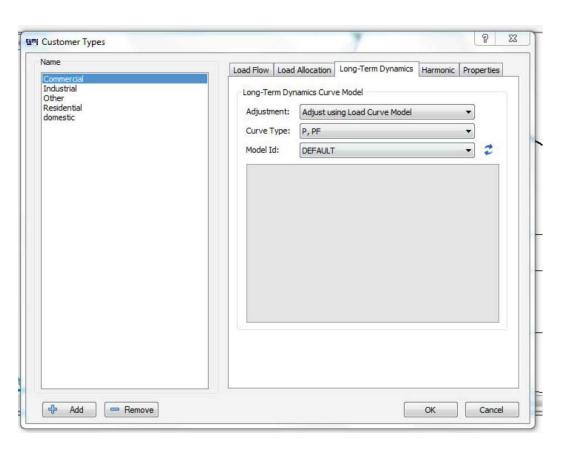
Quasi steady state analysis-Time series analysis

- Why is quasi steady state analysis needed?
- Need to study coincident PV analysis
- Help identify the time dependent aspects of power flowing in distribution systems
- Captures interaction between changing load and PV output.
- 8760 (hourly analysis) done for this study.



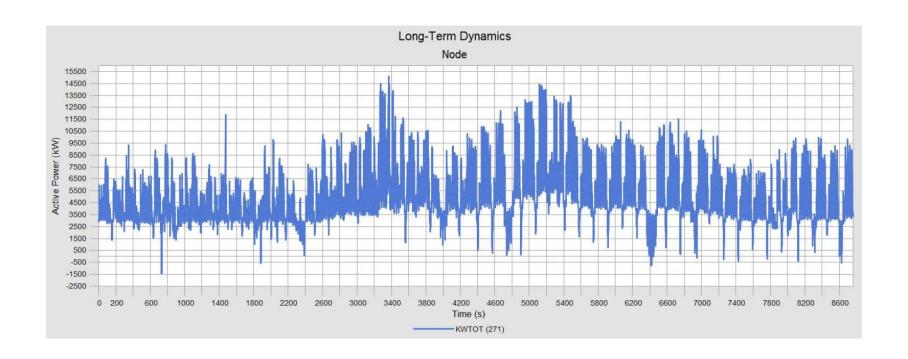
Quasi steady state analysis-Long term dynamics

- Setting up the model
- Defining load and generation curves in the library
- Assigning the curves
- Visualizing results
 - Voltage profile of the feeder
 - Power flow at the substation
 - Power factor at the substation
 - Voltage regulation and status of voltage regulating equipment?

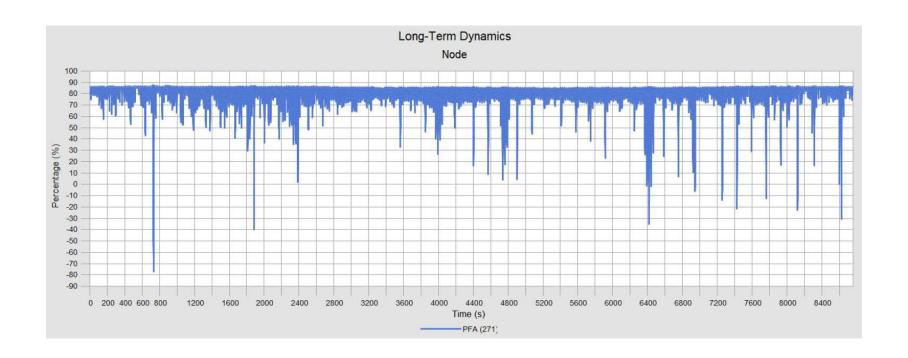


Long term dynamics-Adding curves to the library

Long term dynamics-Assign curves to loads and generators



Visualizing results-Voltage Profile



Visualizing results-Active power at the substation

Visualizing results-Power factor at the substation

Work Flow

- Day 1:
 - Setting up the model
 - Substation Transformer Assumptions
 - Exercise 1.1: Calculating substation short circuit levels
 - Exercise 1.2: Populate PV inverter PF table
 - Discussing IRR-DCC-MV 5 Voltage Requirements
 - Load Allocation
 - Steady state snapshot analysis, Grid code compliance
- Day 2:
 - Exercise 1.3: Quasi steady state analysis-Long term dynamics
 - Exercise 1.4: Short Circuit Study
 - Comparing results of shadow study

Short Circuit Study

Compute fault current contribution from the project

Comparing Shadow Study Results