

IPMVP - Benefits

- Defines standard approaches to "measuring" and "savings calculation" to reassure facility owners.
- Legitimizes ESCO projects through international recognition of the payment through the savings.
- Provides guidance on the trade-off between measurement "accuracy" and measurement cost.
- Helps parties to create transparent, repeatable performance contract terms and emission trades regarding savings settlement.
- Provides general, not specific guidance, and a framework under which specific methodologies are created and used.

Introduction 13

Introduction 7

VO.

- Establishes a framework to manage energy for industrial commercial, institutional or governmental facilities, enabling them to:
 - Develop a policy for more efficient use of energy
 - Fix targets and objectives to meet the policy
 - Use data to better understand and make decisions concerning energy use and consumption
 - Measure the results
 - Review the effectiveness of the policy
 - Continually improve energy management.
- Can be implemented individually or integrated with other management system standards.

 FVO

Introduction 15

© Efficiency Valuation Organization

	The "M" in M&V
	The M in M&V stands for: <i>Measurement</i>
	Not Monitoring
Key Concepts 3	(Monitoring is a separate activity from the determination of savings. It is the process of observing energy use for prediction, cost-control and diagnostic purposes.)

Two Basic Methods

Whole Facility Method:

Measures all effects in the facility:

- Retrofits AND other changes (intended and unintended)
- Often uses the utility meter
- Adjustments can be complex

Retrofit Isolation Method:

Measures the effect of the retrofit, only

- Savings are unaffected by changes beyond the measurement boundary
- Usually requires a dedicated meter
- Adjustments can be simple

Key Concepts 15

© Efficiency Valuation Organization

M&V Cost vs. Uncertainty
There is no <i>absolutely</i> correct savings number. There is always some uncertainty.
Decide how much uncertainty can you accept or afford.
Each owner finds its own balance between reporting uncertainty and cost for each project.
Ref: IPMVP Core Concepts 2014, Chapter 7.11
Key Concepts 23

Key Concepts 12

Key Concepts 15

Multiple ECM Building Retrofit

Commercial Building in Canada

Energy Conservation Measures	Simple Payback (years)
Lighting retrofit	4.5
Energy efficient motors	5.6
HVAC modifications	5.4
Control system	3.4
Building leakage reduction	2.1
Training and awareness	0.5
hort Examples 3	EVO Traditional and the database

© Efficiency Valuation Organization

	Sample Baseli	Optic ne Dat	on C a	
		Heating	Gas	
	Meter Reading Date	Degree	Consumption	
	February 5, 2008	Days (65F)	mcf	
	March 5, 2008	650	210,692	
	April 7, 2008	440	208,664	
	May 6, 2008	220	157,886	
	June 5, 2008	150	120,793	
	July 7, 2008	50	116,508	
	August 7, 2008	20	107,272	
	September 5, 2008	14	95,411	
	October 6, 2008	29	126,423	
	November 6, 2008	125	149,253	
	December 4, 2008	275	166,202	
	January 6, 2009	590	221,600	
	February 5, 2009	723	224,958	and the second
hort Examples E		3.286	1.905.662	EVO

		Co	mnut	ation	nc			
		CO	mput	ation	13			
	Reporting p	ting period Adju data Intercept		Adjusted baseline data Intercept Slope		Savings		
Meter Reading Date	Gata		(Baseload)	(weather Sensitive)	Total		Value	
	Consumption	HDD Factor	tors		Gas (mcf)	Price =		
	mcf	(65F/18C)	111,358	173.27			\$	6.23
March 6, 2009	151,008	601	111,358	104,135	215,493	64,485	\$	401,87
April 4, 2009	122,111	420	111,358	?	?	?	?	
May 6, 2009	102,694	188	111,358	32,575	143,933	41,239	\$	257,00
June 5, 2009	111,211	250	111,358	43,318	154,676	43,465	\$	270,87
July 5, 2009	80,222	41	111,358	7,104	118,462	38,240	\$	238,31
August 6, 2009	71,023	15	111,358	2,599	113,957	42,934	\$	267,56
September 8, 2009	65,534	5	111,358	866	112,224	46,690	\$	290,97
October 9, 2009	77,354	12	111,358	?	?	?	?	
November 4, 2009	103,000	190	111,358	32,921	144,279	41,279	\$	257,25
December 10, 2009	115,112	300	111,358	51,981	163,339	48,227	\$	300,55
January 7, 2010	160,002	700	111,358	121,289	232,647	72,645	\$	452,72
February 4, 2010	145,111	612	111,358	106,041	217,399	72,288	\$	450,49
Total	1,304,382				1,616,409	511,492	\$	3,187,62

Option D

Advantages & Disadvantages

Advantages:

- Evaluates performance of the entire facility **and** individual ECMs.
- Evaluates performance of individual systems.
- Includes interactive effects amongst ECMs, and between ECMs and the rest of the facility.

Disadvantages:

- Can be expensive and complicated.
- Special skills needed for simulation.
- Hard to calibrate simulation to real energy data.

EVO

Short Examples 15

© Efficiency Valuation Organization

	Pre-retrofit	Post-retrofit
# Samples	73	30
Measured average watts per operating (not burned out) fixture	193.1	102.1
Number of fixtures	2,000	1,950

		1
	Pre-retrofit	Post-retrofit
Total kW (95% of fixtures operating)		
Lighting load reduction		kW
Monthly energy savings		kWh/month

Sample (Baselin	Dption B e Test
Averaged over the one mo	onth baseline period test:
Mode	Energy Use (kWh/hr)
Mill ON (operating)	135.1
Mill OFF (not operating)	102.3
Note: Energy use was co	nstant in each mode.
Baseline I	Energy =
(135.1 * ON hrs) +	(102.3 * OFF hrs)
ort Examples 29	

	S a 2009 Rej	ampl porting	e Op g Peri	otion B od Actual [Data
		Plant	Hours	Actual	
		On	Off	Energy (kWh)	
	January	496	248	61,005	
	February	448	224	52,321	
	March	496	248	61,987	
	April	480	240	59,921	
	May	496	248	60,111	
	June	480	240	60,191	
	July	200	544	50,345	
	August	496	248	62,255	
	September	480	240	58,765	
	October	496	248	61,178	
	November	480	240	59,232	
	December	150	594	48,822	a da sana
Short Example	s 30				EVO

Interactive Effects - Example Lighting & Cooling

- The lighting ECM reduces heat gain by 10 kW.
- Reduced heat gain in the facility can reduce the mechanical cooling energy required. It can also increase heating energy in the winter.
- A typical cooling system might see a savings of about 3 kW (from a separate engineering calculation that is not part of this course or IPMVP.)
- So the **Interactive Effect** is **estimated** to be 30% more savings than just the lighting energy (for locations and times when mechanical cooling is used).

M&V Planning 9

© Efficiency Valuation Organization

			1165	LAU	inpic
Using th	ie Optio	on C Exa	imple fr	om Mod	ule 3
ep 1 – Resta	te Base	eline Ga	s under	Normal	conditions
•		Adjusted Bas	eline Gas (Nori	mal Conditions)	
Normal date	Normal	Baseload	Weather Sensitive	Total Normal	
	HDD	intercept	slope	Baseline Gas	
		111 358	173,27	(step 1)	
March	551	111 358	95 472	206 830	
April	482	?	?	?	
May	301	111 358	52 154	163 512	
June	200	111 358	34 654	146 012	
July	55	111 358	9 530	120 888	
August	12	111 358	2 079	113 437	
September	30	111 358	5 198	116 556	
October	66	?	?	?	
November	201	111 358	34 827	146 185	
December	311	111 358	53 887	165 245	
January	677	111 358	117 304	228 662	
Fobruary	603	111 358	104 482	215.840	Marine Company

Norm	aliz	zed	Savi	ngs -	- Eva	mnlo
Sten 3 – Resta	ate Re	norting	Perior	gas und		al condition
		Total	Adjuste	d Reporting P	Period Gas	Normalized
		Normal	Intercept	Slope (weather		Savings
Meter Reading Date	Normal HDD	Baseline Gas	(baseload) Fa	sensitive)	Total	Gas (mcf)
		(step 1)	74,151	124.35		Gus (mei)
March 6, 2009	551	206,830	74,151	68,517	142,668	64,162
April 4, 2009	482	?	?	?	?	?
May 6, 2009	301	163,512	74,151	37,429	111,580	51,932
June 5, 2009	200	146,012	74,151	24,870	99,021	46,991
July 5, 2009	55	120,888	74,151	6,839	80,990	39,898
August 6, 2009	12	113,437	74,151	1,492	75,643	37,794
September 8, 2009	30	116,556	74,151	3,731	77,882	38,674
October 9, 2009	66	?	?	?	?	?
November 4, 2009	201	146,185	74,151	24,994	99,145	47,040
December 10, 2009	311	165,245	74,151	38,673	112,824	52,421
January 7, 2010	677	228,662	74,151	84,185	158,336	70,326
February 4, 2010	603	215,840	74,151	74,983	149,134	66,706
V Planning 18						EVO

Norma	lized	Savir	ngs ·	– EX	am	ple
Comp	arison wi	th "Avoide	ed" gas	(Mod	ule 3)	
Meter Reading Date	"Avoided" Gas	"Normalized Savings"	Difference in Savings	Actual HDD	, Normal HDD	Difference in HDD
March 6, 2009	64,485	64,162	323	601	551	50
April 4, 2009	?	?	?	420	482	(62)
May 6, 2009	41,239	51,932	(10,693)	188	301	(113)
June 5, 2009	43,465	46,991	(3,526)	250	200	50
July 5, 2009	38,240	39,898	(1,658)	41	55	(14)
August 6, 2009	42,934	37,794	5,140	15	12	3
September 8, 2009	46,690	38,674	8,016	5	30	(25)
October 9, 2009	?	?	?	12	66	(54)
November 4, 2009	41,279	47,040	(5,761)	190	201	(11)
December 10, 2009	48,227	52,421	(4,194)	300	311	(11)
January 7, 2010	72,645	70,326	2,319	700	677	23
February 4, 2010	72,288	66,706	5,582	612	603	9
Total	609,595	617,166	(7,571)	3,334	3,489	(155)
	Including	April + Oct	-1.2%			-4.6%

© Efficiency Valuation Organization

M&V Planning 12

Isolation Meter Data Sourc	es
To isolate a retrofit's energy use from the re the facility, we might measure: amps, watts power factor, chilled water energy, hot wate energy, steam flow or energy, condensate, g volume, operating hours, number of cycles,	er gas
Consider:	
Accuracy Availability Credibility Cos	t
M&V Planning 33	

Other Independent Variables or Static Factor Data Sources

For other independent variables or Static Factor, like: production volume, product mix, plant hours, guest room use, sales, store hours, vacancy rate, we must find appropriate formal or informal methods of capturing such data.

Consider:

Accuracy Availability Credibility Cost

M&V Planning 35

© Efficiency Valuation Organization

Meter Accuracy

- Size the meter for the appropriate range.
- Select a meter for the rates occurring most of the time.
- If accuracy beyond the available meter range is important, use two-stage flow meters: high and low flow elements.
- Watch out for loss of accuracy through 'truncation' by data communication or software translation (8 bit data vs. 16 bit data)
- Use the same meter for 'before' and 'after' readings.

EVO

M&V Planning 49

© Efficiency Valuation Organization

Other Uses for M&V Meters

Concerned about the cost of meters? You may be able to share the M&V meter costs with other purposes such as:

- load analysis for ECM planning;
- process control, optimizing or sending alarms about system or component conditions;

EVO

- sub-billing of tenants;
- allocation of costs to responsible departments;
- confirming utility bills;
- forecasting;
- load profiling for negotiation with a power supplier.

Not all meter costs need to be borne by the M&V.

M&V Planning 51

	Metering
Application	Instrument
Electricity	True RMS Wattmeter, power meter
Illumination	Luxmeter, operating hour logger
Occupied hours	Occupancy sensor (Data logger)
Rotational speed	Tachometer (contact, stroboscopic, and optic)
Air flow	Anemometer
Pressure	Digital manometer
Temperature	Digital thermometer or Digital data logger
Humidity	Digital hygrometer
Air quality	Gas analyser: CO2
Combustion	Combustion analyser
Process	Data logger – Process signal
Liquid Flow	Flowmeter - See next slide

© Efficiency Valuation Organization

Meter Installation and commissioning

- Always follow manufacturer's instructions (if you can).
- If you need conduit and/or concealment for wires, costs go up significantly. Is this the place for wireless?
- Use labels and seals to protect meters and cabinets against neglect by others, damage and mistreatment.
- Program data loggers for the correct channels.
- Check to hand held instruments.
- "End to end" initial site calibration from measured quantity to computer readout.

M&V Planning 55

© Efficiency Valuation Organization

Critical Issues 9

© Efficiency Valuation Organization

	M&V Design X	M&V Design Y
Annual Savings	\$100,000	\$100,000
Uncertainty	+/- \$25,000	+/- \$5,000
Annual M&V Cost	\$6,000	How much would you pay? Why?

When Do a BLA?

- Change in Static Factors may be:
 - gradual (creeping load growth) or sudden
 - permanent or temporary.
- Monitor Static Factors relative to those recorded in the M&V Plan for the baseline period.
- Do a BLA when a change in Static Factors is recognized or at least annually – while memories are fresh and other possibly necessary data is still available.

• Avoid changes to long past accounting periods. Critical Issues 19

© Efficiency Valuation Organization

	Ex	am	ple	BI	A -	Par	t 1	
				-	_/ \			
	Number	Wa	ttage	Hou	rs/week	Energy	Diversity	Demand
		Peak	Standby	Peak	Standby	kWh/wk	Factor	kW
Old								
CPU	200	200	175	80	88	6,280	0.80	32
Monitor	200	110	110	130	38	3,696	1.00	22
Printer	75	550	90	130	38	5,619	0.90	37
Total						15,595		91
New								
CPU	300	300	50	80	88	8,520	0.80	72
Monitor	300	125	15	130	38	5,046	1.00	38
Printer	100	600	25	130	38	7,895	0.90	54
Total						21,461		164
Increase					kWh/wk	5,866		72
					kWh/mo	25,400		
Vell kr	nown fa	cts ar	e bold e	ed. 1	The res	t are as	sumptic EV	ons.

E	Exam	nble	BLA	\ — F	Par	t 3	
_		-					
	Electri	city Consun	nption	Elect	ric Dem	and	
	Last	BLA	New	Last	BLA	New	
	Baseline		Baseline	Baseline		Baseline	
Jan	1,350,000	25,400	1,375,400	3,375	72	3,447	
Feb	1,250,000	25,400	1,275,400	3,125	72	3,197	
Mar	1,150,000	25,400	1,175,400	2,875	72	2,947	
Apr	1,250,000	25,400	1,275,400	3,125	72	3,197	
May	1,300,000	33,866	1,333,866	3,250	101	3,351	
Jun	1,400,000	33,866	1,433,866	3,500	101	3,601	
Jul	1,770,000	33,866	1,803,866	4,425	101	4,526	
Aug	1,820,000	33,866	1,853,866	4,550	101	4,651	
Sep	1,700,000	33,866	1,733,866	4,250	101	4,351	
Oct	1,500,000	25,400	1,525,400	3,750	72	3,822	
Nov	1,250,000	25,400	1,275,400	3,125	72	3,197	
Dec	1,200,000	25,400	1,225,400	3,000	72	3,072	
Total		347,130			1,013		
							helte is a

	Example Value Calculation							
	Price	Blocks	Adjust	ed Baseline	Repo	orting Period		
	kWh	Price		270,000		200,000		
	250	\$ 0.2900	\$	73	\$ 73			
	9,750	\$ 0.1510	\$	1,472	\$	1,472		
	240,000	\$ 0.0723	\$	17,352	\$	13,737		
	Balance \$ 0.0611		\$ 1,222		\$-			
		Total	\$	20,119	\$	15,282		
Savings for the example month are: \$20,119 - \$15,282 = \$4,837								
or this isolati rice p	s example, on" meter er kWh wh	if the savi (not utilit ich can be	ngs ha y mete e used	id been de er), is ther to value s	etermi e a <i>sir</i> aving	ined at an ngle margin s for all mo EVO		

Price Blocks			Ad	j Baseline	Rej	porting Per	Savings		
k	Wh		Price		270,000		200,000		70,000
	250	\$	0.2900	\$	73	\$	73	\$	-
9,	750	\$	0.1510	\$	1,472	\$	1,472	\$	-
240,0	000	\$	0.0723	\$	17,352	\$	13,737	\$	3,615
Balan	ce	\$	0.0611	\$	1,222	\$	-	\$	1,222
		1	Total	\$	20,119	\$	15,282	\$	4,837
Ave	rage	\$/	kWh	\$	0.0745	\$	0.0764	\$	0.0691
Marg	inal	\$/	kWh	\$	0.0611	\$	0.0723		?

- If there is a credibility gap arising from the difference in the energy expertise of the parties to a performance contract.
- Energy performance contract terms with an ESCO may (be perceived to) give the two parties divergent interests.
- Requirements of the contract itself (especially in the public sector or as part of a program).
- Requirements of an emission trading program.

VO

Critical Issues 47

© Efficiency Valuation Organization

- Retrofit Isolation techniques (Options A & B) focus on the retrofit.
- Under Option A, field conditions should be **verified** to ensure savings persistence (IPMVP Core Concepts 2014, Chapter 6.2.4)
- Total utility cost may not reflect these savings, due to energy use patterns beyond the boundary of measurement.
- If there is concern about total utility cost:
 - Plan to use Option C, or
 - Set up a means of **verifying** that all other operations are under control.

Critical Issues 53

© Efficiency Valuation Organization

	Next Topic							
1.	Introduction							
2.	Key Concepts							
3.	Short Examples							
4.	M&V Planning							
5.	Critical Issues							
6.	Statistics							
7.	Retrofit Isolation Details							
8.	Option C Details							
9.	Option D Details							
10.	Other M&V applications							
11.	Summary and review of a detailed M&V plan							
Critical Issu	ues 56							

M&V Fundamentals

& the International Performance Measurement and Verification Protocol

For Energy Managers

M&V Calculations

© Efficiency Valuation Organization

Statistics 1

1.Introduction

© Efficiency Valuation Organization

Statistics 12

Linear Reg	gression	- Ex	amp	ole Step	
Create Linear		Days	Heating	Gas	
	Meter Reading Date		Degree	Consumption mcf 210'692 208'664	
regression model	February 5, 2008		Days		
	March 5, 2008	29 33	650		
from Energy	April 7, 2008		440		
Consumption data:	Iviay 6, 2008	29	220	157 886	
consumption data.	Julie 5, 2008	30	150	120 793	
	August 7, 2008	32	20	107'272	
	September 5, 2008	29	14	95'411	
	October 6, 2008	31	29	126'423	
File: Example Option C.xls	November 6, 2008	31	125	149'253	
	December 4, 2008	28	275	166'202	
	January 6, 2009	33	590	221'600	
	February 5, 2009	30	723	224'958	
		366	3'286	1'905'662	
atistics 25			Ń		

[©] Efficiency Valuation Organization

- The M&V Plan, (IPMVP Core Concepts 2014, Chapter 7.11) should indicate the expected accuracy associated with the measurement, data capture, sampling and data analysis.
 - This assessment should include qualitative and feasible quantitative determination of the *confidence interval* within which one expects the true savings value would be.
 - It is also requested to state the *confidence level*: the probability to have the *true* savings result/measurement within the defined *confidence interval (advanced M&V course).*
- Let us take an example.

Statistics 39

© Efficiency Valuation Organization

Statistics 20

© Efficiency Valuation Organization

Statistics 27

Next Topic

- 1. Introduction
- 2. Key Concepts
- 3. Short Examples
- 4. M&V Planning
- 5. Critical Issues
- 6. Statistics
- 7. Retrofit Isolation Details
- 8. Option C Details
- 9. Option D Details
- 10. Other M&V applications
- 11. Summary and review of a detailed M&V plan

M&V Fundamentals

& the International Performance Measurement and Verification Protocol

For Energy Managers

Retrofit Isolation Details

© Efficiency Valuation Organization

Option B Step 3 (Baseline data)															
Gathered data from several weeks of testing:															
Tons	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000
Measured kW	290	350	400	360	400	390	430	420	570	540	620	600	600	750	750
For later reference: • Total of cooling load data = 9,750 tons • Total of electrical measured average kW data = 7,470 kW															
Retrofit Isolation 11							RGANIZATION	dalalalalal							

Option B Step 6 (Predict)								
			For	On	e D	ay		
		New N	Nachine		Old Machir	ne		
		Actual Po	st-Retrofit	Predic	ted Electric	ity (kW)	Savings	
		D	ata	Fac	tors			
	Time	Avg kW	Avg Load	Fixed	Load	Total	kW	
	23-Jul-09		Tons	95	0.62			
	6:00	500	900	95	558	653	153	
	7:00	420	800	95	496	591	171	
	8:00	225	300				?	
	9:00	265	400	95	248	343	78	
	10:00	310	450	95	279	374	64	
	11:00	320	500	95	310	405	85	
	12:00	382	600	95	372	467	85	
	13:00	435	700	95	434	529	94	
	14:00	500	800	95	496	591	91	
	15:00	490	800	95	496	591	101	
	16:00	520	850	95	527	622	102	
	17:00	515	850				?	
	18:00	490	800	95	496	591	101	
	19:00	430	/00	95	434	529	99	all de la constance
	20:00	360	600	95	3/2	467	107	

Option B Step 9 (Valuing)								
July 2009	Units	Marginal Price	Value					
Consumption	55,240 kWh	\$0.0723	\$3,994					
Demand	99 kW	\$12.57	<u>\$1,244</u>					
Total			\$5,238					
Note: What is a bet	ter way to ex	press the sa	vings?					
Retrofit Isolation 21								

Option A Step 4 (Baseline)								
T.load Tons	date	time	Establish Mean kW and kW/ton					
152	07.05.06	09:30:56						
158	07.05.06	10:15:10	in each load range or 'bin'.					
162	09.05.06	08:35:20	The Bin Method is developed from					
210	09.05.06	09:45:00	historical data. Data collection may be					
205	09.05.06	09:00:12	performed using load range bins which					
232	06.06.06	11:02:20	are created by recording all hourly occurrences of closely related load					
155	05.06.06	09:20:54	data. Historical records that fall into a certain range of the load are collected					
152	17.06.06	08:40:00	and then distinguished by the mid-					
170	07.07.06	12:00:50	point of the range.					
160	07.07.06	11:45:30	\mathbf{X}					
225 ation 32	17.07.06	10:12:00	Data extracted from historian for the first 100 T 'bin' (150- 249.99 Tons), 5' samples EVO					
	Op: 152 152 158 162 210 205 232 155 152 155 152 170 160 225 ation 32	Option 152 07.05.06 152 07.05.06 158 07.05.06 210 09.05.06 205 09.05.06 205 09.05.06 205 05.06.06 155 05.06.06 152 17.06.06 150 07.07.06 205 17.07.06 205 17.07.06	Coption A St T.load Tons date time 152 07.05.06 09:30:56 158 07.05.06 09:30:50 158 07.05.06 09:30:50 162 09.05.06 08:35:20 210 09.05.06 09:01:12 232 06.06.06 11:02:20 155 05.06.06 09:20:54 152 17.06.06 08:40:00 170 07.07.06 12:00:50 160 07.07.06 11:45:30 225 17.07.06 10:12:00					

Option A Step 8 (Demand Savings)									
Demand Savi	Demand Savings (for the entire cooling season):								
	Assumed	Computed Demand							
	Load	Reduction							
May	500 tons	135.5 kW							
June	800 tons	216.8 kW							
July	900 tons	243.9 kW							
Aug	1000 tons	271 kW							
Sept	900 tons	243.9 kW							
Oct	500 tons	135.5 kW							
Total		1,246.6 kW-mo							
Assume chille	r peak demand c	oincides with the utility							
meter time of Retrofit Isolation 37	peak.	EVO							

Next Topic								
1. Introduction								
2. Key Concepts								
3. Short Examples								
4. M&V Planning								
5. Critical Issues								
6. Statistics								
7. Retrofit Isolation Details								
8. Option C Details								
9. Option D Details								
10. Other M&V applications								
11. Summary and review of a detailed M&V plan Retrofit Isolation 46								

Option C Step 3 (Baseline Data)									
Let's drill i	nto data of the	previous	s Optio	on C example					
	Meter Reading	Gas	Heating	1					
	Date	Consumption	Degree						
	February 5, 2008	units	Days						
	March 5, 2008	210,692	650						
	April 7, 2008	208,664	440						
	May 6, 2008	157,886	220						
	June 5, 2008	120,793	150						
	July 7, 2008	116,508	50						
	August 7, 2008	107,272	20						
	September 5, 2008	95,411	14						
	October 6, 2008	126,423	29						
	November 6, 2008	149,253	125						
	December 4, 2008	166,202	275						
	January 6, 2009	221,600	590						
	February 5, 2009	224,958	723	174 - 1-1					
	Total	1,905,662	3,286	EVO					
Option C 7				Streens Wallands Destruction					

Option C 4

Option C 5

Option C Step 6 (Predict)

After retrofit, for each month predict what the baseline gas use <u>would have been</u> under conditions of the current month's weather (i.e. the adjusted baseline).

Procedure:

- 1. Record the weather (HDD)
- 2. Plug HDD into the mathematical model:

Option C 11

Option C Step 8 & 9 (Savings and Valuing)

	Poporting paris	d data	Adju	sted baselin	Savings			
Meter Reading Date	Reporting period data		Intercept (Baseload)	Slope (Weather Sensitive)	Total	Gas (units)	Value	
	Consumption		Fac	tors		eus (units)	Price =	
	units	поо	111 358	173,27			\$ 6,232	
March 6, 2009	151 008	601	111 358	104 135	215 493	64 485	\$ 401 871	
April 4, 2009	122 111	420	111 358	72 773	184 131	62 020	\$ 386 509	
May 6, 2009	102 694	188	111 358	32 575	143 933	41 239	\$ 257 001	
June 5, 2009	111 211	250	111 358	43 318	154 676	43 465	\$ 270 874	
July 5, 2009	80 222	41	111 358	7 104	118 462	38 240	\$ 238 312	
August 6, 2009	71 023	15	111 358	2 599	113 957	42 934	\$ 267 565	
September 8, 2009	65 534	5	111 358	866	112 224	46 690	\$ 290 972	
October 9, 2009	77 354	12	111 358	2 079	113 437	36 083	\$ 224 869	
November 4, 2009	103 000	190	111 358	32 921	144 279	41 279	\$ 257 251	
December 10, 2009	115 112	300	111 358	51 981	163 339	48 227	\$ 300 551	
January 7, 2010	160 002	700	111 358	121 289	232 647	72 645	\$ 452 724	
February 4, 2010	145 111	612	111 358	106 041	217 399	72 288	\$ 450 499	
Total	1 304 382				1 913 977	609 595	\$ 3 798 998	

Option C 9

Next Topic

- 1. Introduction
- 2. Key Concepts
- 3. Short Examples
- 4. M&V Planning
- 5. Critical Issues
- 6. Statistics
- 7. Retrofit Isolation Details
- 8. Option C Details
- 9. Option D Details
- 10. Other M&V applications
- 11. Summary and review of a detailed M&V plan

Option C 20

EVO

Simulation during the design phase

During the design phase, a simulation model is often used to evaluate the building energy consumption

- If the building exists:
 - Build simulation model of baseline equipment and conditions.
 - Develop "what if" models to estimate performance of proposed measures.
 - Select most cost-effective package.
 - Compare proposed to baseline.

These simulations are used to *predict* savings from retrofits before construction.

Option D 5

Option D – Basic Method

If no computer simulation of the building energy use has been performed during the design phase, proceed as follows:

- i. Build a computer simulation model of energy use.
- ii. Gather real energy use data.
- iii. 'Calibrate' the computer model to make it fit the real energy data.
- iv. Run the calibrated model with and without retrofits. Savings are the difference in energy use of the two runs.

Option D 7

© Efficiency Valuation Organization

Option D 4

20267590 Filiplich Bollah Bollah Bollah B

					_		
Post-retr	ofit p	eriod ac	tual	energy	/ dat	:a - fo	or Calibration
		Steam		Elec	tricity		
		units	Days	kWh	kW	Days	
	Jan	1,200,000	31	140,000	340	31	
	Feb	1,100,000	28	120,000	350	28	
	Mar	1,000,000	31	140,000	350	31	
	Apr	800,000	30	150,000	380	30	
	May	300,000	31	160,000	450	31	
	June	200,000	30	170,000	570	30	
	July	200,000	31	190,000	650	31	
	Aug	200,000	31	195,000	650	31	
	Sept	400,000	30	180,000	640	30	
	Oct	500,000	31	160,000	600	31	
	Nov	800,000	30	150,000	380	30	
	Dec	1,000,000	31	120,000	320	31	

Option D Step 5b (Calibrate)

The Normalized Mean Bias Error is calculated as follows:

$$NMBE = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)}{(n-p) \times \bar{y}} \times 100$$

where:

n = number of data points or periods in the baseline period

 $\hat{\mathbf{y}}$ = simulation predicted data

 y_i = utility data used for the calibration

 $\bar{\mathbf{v}}$ = arithmetic mean of the sample of *n* observations

Option D 17

© Efficiency Valuation Organization

Option D 9

'2665026109N Sédici chadada da bahada da b

C E.g. Ste	Option D Step 6 (Savings) E.g. Steam Savings - from comparing two simulations:									
		Pre	dicted Steam (uni	ts)						
		No Retrofits	With Retrofits	Savings						
	Jan	1,400,000	1,120,000	280,000						
	Feb	1,350,000	1,115,000	235,000						
	Mar	1,250,000	1,060,000	190,000						
	Apr	920,000	823,000	97,000						
	May	360,000	305,000	55,000						
	June	250,000	188,000	62,000						
	July	245,000	194,000	51,000						
	Aug	260,000	202,000	58,000						
	Sept	455,000	402,000	53,000						
	Oct	570,000	495,000	75,000						
	Nov	902,000	795,000	107,000						
	Dec	1,302,000	1,070,000	232,000	EVO.					
Option D 21	Total	9,264,000	7,769,000	1,495,000						

Option D 15

Next Topic

- 1. Introduction
- 2. Key Concepts
- 3. Short Examples
- 4. M&V Planning
- 5. Critical Issues
- 6. Statistics
- 7. Retrofit Isolation Details
- 8. Option C Details
- 9. Option D Details
- 10. Other M&V applications
- 11. Summary and review of a detailed M&V plan

Option D 32

2865026199N Béla Falala bala bala bala bala b

M&V Fundamentals

& the International Performance Measurement and Verification Protocol

For Energy Managers

Other M&V Applications Persistence of savings

© Efficiency Valuation Organization

<section-header><list-item><list-item><list-item><list-item></table-row></table-row><table-container>

M&T Benefits

- Significant energy savings (between 5% and 15%)
- Very short payback period (less than 2 years)
- Energy cost management
- Greenhouse gas emission reductions
- Quantification of potential savings
- Promotion of financing options for energy efficiency projects
- Energy savings projections

Other M&V use 9

© Efficiency Valuation Organization

Next Topic
1. Introduction
2. Key Concepts
3. Short Examples
4. M&V Planning
5. Critical Issues
6. Statistics
7. Retrofit Isolation Details
8. Option C Details
9. Option D Details
10. Other M&V applications
11. Summary and review of a detailed M&V plan Other M&V use 12

	<u>A</u>	<u>B</u>	<u>C</u>	D
Assess retrofits individually	х	x		x
Assess facility only			x	х
Savings <10% of utility meter's energy	x	x		x
ndustrial	х	x		х

Select	ing	- 2			
	<u>A</u>	<u>B</u>	<u>C</u>	D	
Significance of variables is unclear.		х	х	x	
Interactive effects cannot be easily estimated.			х	x	
Expect many future changes within the measurement boundary (= many BLAs)	х			x	
Long term assessment	х		х		
No baseline energy data				x	
Summary 9				EVO	oppassezentzen gelaktezentzen gelaktezentzen

Selecting - 3					
	<u>A</u>	<u>B</u>	<u>C</u>	D	
Need non-technical people to understand the meaning of savings reports	х	х	x		
Have metering skill and experience	х	х			
Have simulation skill and experience				x	
Have utility bill reading skill			х		

