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Abstract 

 

This report provides an extension to a previous paper (Tijsseling and Anderson, 2004) in 

which we showed that Johannes von Kries (1883) was the first to derive and validate the 

"Joukowsky equation" for waterhammer. Since there is a strong analogy between pressure 

waves in fluids and stress waves in solids, and waterhammer relates to impact mechanics, it is 

likely that the "Joukowsky equation" for solids already existed before 1883. Also, 

19th century's scientists must have been aware of the fluids/solids analogy. 

 In this historical study we try to answer the question of who was the first to derive the 

Joukowsky equation in either fluids or solids. 
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The “Joukowsky equation” for fluids 

 

The fundamental equation in waterhammer theory relates pressure changes, ∆p, to velocity 

changes, ∆v, according to 

 

 ρ∆ = ∆p c v             (1) 

 

where ρ is the fluid mass density and c is the speed of sound. Korteweg’s (1878) formula defines 

c for fluid contained in cylindrical pipes of circular cross-section: 

 

 ρ*Kc =           and          )]/()(1[/* eEDKKK +=        (2) 

 

where D is the diameter of the pipe, e is the wall thickness, E is the modulus of elasticity for the 

wall, and K is the bulk modulus of the contained fluid. 

 Relation (1) is commonly known as the “Joukowsky equation”, but it is sometimes referred 

to as either the “Joukowsky-Frizell” or the “Allievi” equation. Its first explicit statement in the 

context of waterhammer is usually attributed to Joukowsky (1898). Frizell (1898) and Allievi 

(1902, 1913), unaware of the achievements by Joukowsky and Frizell, also found equation (1), 

but they did not provide any experimental validation. Anderson (2000) noted that Rankine 

(1870) had already derived equation (1) in a context more general than waterhammer. See the 

Appendix of (Tijsseling and Anderson, 2004). Kries (1883, p. 74) derived relation (1), 

mentioning – without a particular reference – its existence in the theory of shock waves, but at 

the same time stating that it had not been validated by experiments, something he would do. 
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The “Joukowsky equation” for solids 

 

The early investigators of waterhammer had not noticed the analogy with longitudinal waves in 

solid bars (Boulanger 1913, p. 14) except for Stromeyer (1901) in a rare paper and Gibson 

(1908, pp. 40-41). 

 Young (1807, pp. 143-145) found that the strain ε produced by the impact of elastic solid 

bodies equals v/c. With Hooke's law stating that ε = −σ/E, where σ is stress and E is Young's 

modulus of elasticity, this gives σ = −Ev/c. Assuming that c = √(E/ρ), one obtains for the solids 

equivalent of equation (1): 

 

 c vσ ρ= −             (3) 

 

 Young (1808) was the first to find the pressure wave speed for incompressible liquids 

contained in elastic tubes, and the authors think that Young was also aware of the speed of sound 

in solid bars, c = √(E/ρ), as explained in the Appendix herein. Young's work is difficult to read, 

but Timoshenko (1953, pp. 93-94) gives a neat summary of the above expressed in modern 

terminology. It is noted that the strain ε in liquids contained in tubes equals P/K*, where K* is the 

effective bulk modulus representing fluid compressibility and tube wall elasticity. 

 Saint-Venant (1867) gives a clear, rigorous and complete treatment of the longitudinal 

collision of two solid bars. This is analogous to frictionless waterhammer. On the pages 355-

357, Eqs. (a), (b) and (c), he derives for a bar of cross section A:  F = σA = −EAε,  v = cε  and  c 

= √(E/ρ), which can be combined into Eq. (3). In later papers Saint-Venant (1870, 1883) gives 

full credit to Babinet for the first clear derivation of c (oral presentation in 1829, written down 

by Pierre in 1862, p. 155), although the formula itself goes back to Newton, Euler and Lagrange. 

The corresponding speed of sound in liquids is c = √(K*/ρ). Korteweg (1878) derived the proper 

value for K* in waterhammer given in Eq. (2). Saint-Venant also employed a graphical method 

forerunning the Schnyder (1932) - Bergeron (1935) graphical method (this was the standard 

waterhammer calculation tool in the pre-computer era). It is remarkable to see that it is Rankine 

(1867) who reviewed Saint-Venant's (1867) paper (with partial translation into English). In 

earlier work Rankine (1851) had found the wave speed of nearly longitudinal vibration and he 

already noted the similarity of vibrations in solids and liquids. 

 The history of this subject is extensively described by Todhunter and Pearson (1886, 1893) 

and Timoshenko (1953). Timoshenko and Goodier (1970, pp. 492-494) summarise the 
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achievements of Young and Saint-Venant. Bergeron (1950; 1961, pp. 194-233) is probably the 

first to apply – the other way around – waterhammer theory to the axial vibration of solid bars. 

 

 

Conclusions 

 

The "Joukowsky equation", ρ∆ = ∆p c v , its derivation and validation, was published by 

Joukowsky (1898) in a comprehensive study of pressure waves in water supply lines. The same 

equation had earlier been derived and validated, through experiments in water-filled rubber 

hoses, by Kries (1883) in a study of the pulse. Independently, Frizell (1898) and Allievi 

(1902) derived the "Joukowsky equation" in pure theoretical studies. 

 It is Rankine (1870) who had already found the equation in a more general context, thus 

preceding Kries and Joukowsky. Rankine (1870) opened his paper by writing that: “The 

object of the present investigation is to determine the relations which must exist between the 

laws of the elasticity of any substance, whether gaseous, liquid or solid, and those of the 

wave-like propagation of a finite longitudinal disturbance in that substance.” He was fully 

aware of the analogy between waves in fluids and solids, given that Rankine (1867) had 

reviewed and translated an impressive piece of work by Saint-Venant (1867) on the elastic 

collision of two solid bars. Saint-Venant (1867) derived three equations, which combine into 

the "Joukowsky equation" for solids, c vσ ρ= − . 

 It is typical for Young (1802, 1807, 1808) that he had found all the ingredients to arrive at 

the "Joukowsky equation" for fluids and solids, but that his achievements were not picked up 

by his contemporaries. 
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Appendix:   Young (1808) and the waterhammer wave speed 

 

Young (1808) is of fundamental importance to the history of waterhammer, concerning "the 

propagation of an impulse through an elastic tube", in which Young derived for the first time 

the now standard formula for waves of an incompressible fluid in an elastic tube (which forms 

half of the waterhammer wave velocity expression). Unfortunately his analysis was obscure 

and the actual formula was not explicitly written in his paper so his achievement (like many 

others) passed unnoticed until it was rediscovered nearly half a century later by the brothers 

Weber (1850, 1866). 

 

Young's argument proceeded as follows. “The same reasoning, that is employed for 

determining the velocity of an impulse, transmitted through an elastic solid or fluid body, is 

also applicable to the case of an incompressible fluid contained in an elastic pipe” (this 

suggests that Young had obtained the speed of sound in a solid bar). The problem is then to 

determine the apparent modulus of elasticity conferred on the incompressible fluid by the 

elasticity of pipe walls, or, in Young's terminology, to discover "the height of the modulus" to 

be substituted into Newton's basic formula (Young 1802) 

 

c gh=          (A1) 

 

for the speed of sound, this formula giving a velocity half as great as that of a body falling 

freely from a height 2h  [2h = gt
2/2 gives t = √(4h/g), and therefore gt = 2√(gh) ]. Note that 

Young first introduced his modulus with the dimension of height rather than the modern 

dimension of stress (Todhunter and Pearson 1886, p. 82; Straub 1952, p. 155; Timoshenko 

1953, p. 92). 

 

Continuing the argument, if the pipe is such that the increase in tension force varies as the 

increase in circumference or diameter from the natural state (i.e., the pipe is elastic and obeys 

Hooke's law) up to the limit (at which the pressure in the fluid must balance the tension in the 

pipe by Newton's first law) where an infinite increase in diameter occurs (i.e., plastic 

deformation at elastic limit), then the height of a column of liquid equivalent to the pressure 

causing failure is designated "the modular column of the pipe". This is an application of the 

maximum stress theory that was favoured by English writers over the maximum strain theory, 
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which was favoured on the Continent (Timoshenko 1953, p. 89).  

 

The relationship is readily demonstrated since, from the stress/strain curve up to the elastic 

limit 
2/2 /(2 )σ ε σ= =f E  (for σ ε= E ) or, replacing the stresses with their equivalent 

"heights", 
22 (2 ) /(2 )ρ=h h g E , i.e., /( )ρ=h E g . 

 

For the equivalent elasticity conferred on the incompressible fluid Young used the continuity 

principle. If a short length of pipe of diameter D and length x is compressed in length by a 

pressure pulsation to ( )x xδ− , then if the fluid is incompressible the diameter D must increase 

to preserve continuity so that (2 / / )D D x xδ δ−  = 0. But the increase in hoop strain ( / )D D∂  

= ( / )Eσ  for a pipe in tension, and the hoop stress for an increase in pressure Pδ is given by 

/(2 )D P eδ , so that /( )D Ee  = /( / )P x xδ δ . The right hand side of this last relationship 

defines precisely an apparent compressibility for the liquid, which is therefore given 

conveniently by the expression on the left hand side. Young terminated his argument at this 

point but it is a trivial matter to make the substitution into Eq. (A1) to give explicitly: 

 

 
Ee

c
Dρ

=          (A2) 

 

Young was undoubtedly in a position to obtain the celerity of the waterhammer wave if he so 

desired. The continuity method he used can be extended to take account of compressible 

fluids (indeed it was the method used by Korteweg, Kries and Joukowsky, seventy, seventy-

five and ninety years later, respectively). Nevertheless he did not, though he did go on to 

consider the reflection and collision of waves, to state that the particle velocity must be less 

than the wave velocity and to examine the effect of a contraction in a pipe. 
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Notation 

 

A cross-sectional area, m2 

c sonic wave speed, m/s 

D internal tube diameter, m 

E Young modulus, Pa 

e tube wall thickness, m 

F force, N 

f elastic limit, Pa 

g gravitational acceleration, m/s2 

h height, pressure head, m 

K fluid bulk modulus, Pa 

K
* effective fluid bulk modulus, Pa 

p fluid pressure, Pa 

t time, s 

v velocity, m/s 

x length, m 

∆ change, jump 

ε longitudinal strain 

ρ mass density, kg/m3 

σ longitudinal stress, Pa 

 


